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 Seven-Sided Star Figures and Tuning Algorithms
 in Mesopotamian, Greek, and Islamic Texts

 By Jöran Friberg1 (Gothenburg)

 1. Regular Polygons and Star Figures in Greek and Mesopotamian Texts

 In Euclid's Elements, propositions XIII.7-12 deal with the following types of regular «-sided polygons with n
 = 3, 5, 6, 10: the equilateral triangle, the pentagon, the hexagon, and the decagon. (See, most recently, the
 discussion in Friberg, Amazing Traces, Sec. 7.2.) In Hero of Alexandria's Metrica I, the sections 17-25 are devoted
 to rules for the (approximate) computation of the areas of regular «-sided polygons when n = 5, 6, 7, 8, 9, 10, 11,
 12. (See Heath, HGM II, 326-329.) Finally, according to Lucian and a scholiast to the Clouds of Aristophanes,

 "the triple interwoven triangle, the pentagram, i.e. the star-pentagon, was used by the Pythagoreans as a symbol of
 recognition between the members of the same school, and was called by them Health" (Heath, HGM I, 161).

 This means that also the «-sided regular star figure with n — 5, the pentagram, was known (and probably studied)
 by early Greek mathematicians.

 One purpose of the present paper is to give a brief
 survey of all known instances when «-sided regular
 polygons or star figures occur, in one form or another,
 on Mesopotamian clay tablets from the 1st, 2nd, and
 3rd millennia BC. The results of the survey are pre
 sented in tabular form in Fig. 1.1 below. The tabular
 survey shows «-sided regular polygons with n = 3, 4,
 5, 6, 7, and n-sided star
 figures with n - 5, 7, 8,
 12.

 In the tabular survey, the
 following notations are
 used regarding the type
 of the texts:

 c this is the most likely
 form of a figure men
 tioned in a mathemati

 cal table of constants,
 d this is the most likely

 intended form of a fig
 ure shown in a geomet
 ric diagram,

 p this is the most likely
 form of a figure men
 tioned in a mathemati

 cal problem text,
 t this is the most likely

 form of a figure related
 to entries in a math

 ematical table text.

 Note that a substan

 tial part of the examples
 listed in the tabular sur

 vey come from recently
 published texts in the
 Sch0yen collection (Fri

 berg, MSCT 1), namely: n = 3: examples 1, 2, 3; n
 = 4: examples 3 and 5; n = 6: example 2. Two come
 from the Iraq Museum in Baghdad, courtesy F. Al
 Rawi, namely both examples with n = 8. Examples 2
 3 with n = 7 appear, explicitly and implicitly, in a text
 discussed quite recently by Horowitz in JANES 30 and
 by Waerzeggers and Siebes in NABU 2007/2.

 n = 3 n =4

 OB: d  EDI II: t

 OAkk: p
 OB, LB: p

 n = 12

 OB: c OB: c, d OB: c, d

 OB: c, d
 Kass: p

 OB: c, d, p pr-Sum: d Neo-Sum?: d OB?: d, t
 OB: d

 LB: d, p EDIII: d
 OB, NB: d, p

 OB?: t

 OB?: d

 Sel: d

 w  \  /  \  /
 /  s  /
 \  /  \  /
 /  \  /  \

 OB: d OB: d

 Fig. 1.1. Regular polygons and star figures appearing on known Mesopotamian clay tablets.

 ') This work has been
 supported by Stiftelsen
 Längmanska Kulturfonden.
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 122 Jöran Friberg

 The more detailed discussion below of the various

 examples listed in the tabular survey in Fig. 1.1 will
 start with the examples with the smallest number of
 sides, proceeding from the several known cases with n
 = 3 to the single known case with n = 12.

 2. n = 3: Equilateral Triangles

 Equilateral triangles are three-sided regular poly
 gons. An equilateral triangle inscribed in a circle
 appears on the Old Babylonian clay tablet MS 3051
 (Friberg, MSCT 1, Fig. 8.1.1; see Fig. 2.1 below). It is
 likely that the school boy who drew the diagram on
 the tablet had been given an assignment to compute
 the areas of the four parts of the divided circle, the
 equilateral triangle and the three circle segments, when
 the length of the circumference was given, equal to
 precisely 1 (• 60 length units).

 Indeed, each one of the three circle segments would
 then be bounded by a circular arc of length 60/3 = 20,
 as correctly indicated in the diagram. According to a
 convenient Babylonian convention, the length of the
 diameter of the circle would be 60/3 = 20, as well, and
 the length of the radius r = 10. Consequently, the area
 of the equilateral triangle would be

 A = si2 • h, where h = r + r/2
 = 15 and s = r ■ sqs. 3
 = 10 • sqs. 3.2

 (See Friberg, MSCT 1, Fig.
 8.2.4.) However, the incorrect
 value recorded inside the equi
 lateral triangle in the diagram is
 1 52 30, carelessly computed as

 A = h/2 h= 15/2 • 15 = 7;30 • 15
 = 1 52;30.

 With departure from this incor
 rect result, the area of each one
 of the three circular segments is
 then computed as

 area of segment = (area of circle
 - area of triangle)/3 = (5 00 - 1
 52;30)/3 = 3 07;30/3 = 1 02;30.

 This incorrect value is recorded inside

 each one of the three circular segments.
 An equilateral triangle divided into a

 chain of three trapezoids plus a smaller
 equilateral triangle is depicted on MS 2192
 (Friberg, MSCT 1, Fig. 8.2.2; see Fig. 2.2
 below). In this case, the assignment prob
 ably was to find the areas of the various
 parts of the larger triangle when the sides

 of the two equilateral triangles had the given lengths 1
 (• 60) and 10, respectively.

 The following curiously formulated entry in the
 Old Babylonian table of constants G = IM 52916 gives
 a rule for the computation of the area of an equilateral
 triangle:

 A peg-head (triangle), with an eighth torn out, 26 15 its
 constant G rev. 7'

 What this means is that for an equilateral triangle with
 the side s the area A is

 A = s/2 ■ (sqs. 3)/2 • s = (appr.) s/2 ■ (1 - 1/8) ■ s = ;30
 ■ (1 - ;07 30) • sq. s = ;26 15 • sq. s.

 (See Friberg, MSCT 1, Sec. 8.2). This rule is explicitly
 applied in the Kassite (post-Old-Babylonian) math
 ematical text MS 3876 (Friberg, MSCT 1, Sec. 11.3),
 as one of the steps in the correct computation of the
 weight of the shell of a colossal icosahedron, com
 posed of (6 - 1) • 4 = 20 equilateral triangles of
 copper, each one of them with the side 3 cubits and the
 thickness 1 finger (= 1/30 cubit); see Fig. 2.3.

 On the obverse of the Old Babylonian tablet TMS
 2 (Fig. 5.1 below), the area of an equilateral triangle
 with the side 30 (one sixth of the area of a regular
 hexagon with this side) is given as 6 33 45, which is
 correctly 1/4 of 26 15, the mentioned 'constant' for an

 Fig. 2.1. MS 3051. An equilateral triangle inscribed in a circle.

 Fig. 2.2. MS 2192. An equilateral triangle divided into
 three trapezoids and a smaller equilateral triangle.

 2) The abbreviation sqs. stands for "square
 side" or, in modern terms, "square root."
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 Fig. 2.3. MS 38762. A colossal icosahedron made
 of (6 - 1) - 4 = 20 equilateral copper triangles.

 equilateral triangle, meaning the area of an equilateral
 triangle with the side 1 (• 60).

 In the Late-Babylonian mathematical "recombina
 tion text" W 23291 (Friberg, BaM 28, 285-286), two
 rules are given for the computation of the area of an
 equilateral triangle. In § 4 b, the rule is formulated in
 the following way:

 1 peg-head-field, equilateral, that with an 8th torn out,
 stroke steps of ditto and steps of 26 15 go.

 This is clearly a reformulation of the Old Babylonian
 rule mentioned above. (Here, 'peg-head' means 'trian
 gle,' and 'stroke steps of ditto and steps of 26 15 go'
 means 'multiply the side length by itself and by 26
 15.') The rule is followed by a diagram and a numeri
 cal application of the rule; see Fig. 2.4.

 1 front

 Fig. 2.4. W 23291 § 4 b. An equi
 lateral triangle with the side
 1 (• 60) and the height 52;30

 = (1 - 1/8) • 60.

 Interestingly, the rule in § 4 b, obviously a legacy
 from Old Babylonian mathematics, is confronted in
 § 4 c with a more accurate, presumably Late-Babylonian
 rule:

 1 peg-head-field, equilateral, that with a 10th and a 30th
 torn out, stroke steps of ditto and steps of 26 go.

 What this means is that for an equilateral triangle with
 the side s the area A is

 A = 5/2 • (sqs. 3)/2 • s = (appr.) s/2 ■ (1 - 1/10 1/30) • j
 = ;30 • (1 - ;08) • sq. s = ;26 • sq. s.

 (Thus, in terms of common fractions, the Old and
 Late-Babylonian approximations to the square side of
 3 are, respectively

 sqs. 3 = (appr.) 2 • (1 - 1/8) = 7/4 and sqs. 3
 = (appr.) 2 • (1 - 1/10 1/30) = 26/15.

 See the thorough discussion of more or less
 accurate Greek and Babylonian square side
 approximations in Friberg, Amazing Traces,
 Ch. 16.)

 A geometric doodle on the reverse of an
 Old Babylonian tablet with a single multiplica
 tion table on the obverse has the form of a

 badly drawn "upside-down" equilateral triangle
 divided into several smaller pieces by two lines
 parallel to the top and at least two diagonal
 lines. See Fig. 1.1, bottom (Friberg, MSCT 1,
 Fig. 8.1.14).

 3. n = 4: Squares

 Squares are four-sided regular polygons. The old
 est known appearance of squares on any clay tablet
 from Mesopotamia can be found on a tablet from
 Suruppak, dateable to the Early Dynastic Ilia period
 (c. 2600-2500 BC). The tablet, VAT 12593, is in
 scribed with a metro-mathematical table of areas of

 large squares, with side lengths expressed as multiples
 of the ninda (Friberg, MSCT 1, Fig. 6.1.3).

 Also from the Early Dynastic period, but somewhat
 younger than VAT 12593, and of unknown prove
 nance, is CUNES 50-08-001 (Friberg, MSCT 1, 419
 425, Figs. A7.1-2). It is a very large and complex
 metro-mathematical table of areas of squares, divided
 into a series of sub-tables with the side lengths of the
 squares expressed as multiples of the ninda and vari
 ous fractions of the ninda.

 Younger still, from the Early Dynastic Illb period,
 is the smaller, but parallel, text A 681 from Adab
 (Friberg, MSCT 1, 357-60, Fig. A 1.4), a table of areas
 of squares with side lengths expressed as multiples of
 the cubit.

 Some metro-mathematical "field-side-and-area

 texts" from the Old Akkadian period (c. 2340-2200
 BC) contain relatively com
 plicated computations of
 areas of squares with given
 side lengths, but no illus
 trating diagrams (see Fri
 berg, MSCT 1, Sec. A6.2;
 id., CDLJ 2005: 2, §§4.3
 4.7).

 TSS 77 is a fragment of
 a round tablet with a dia

 gram of a square with four
 inscribed circles (see Fri
 berg, Amazing Traces, 3.1
 6.2.1; Fig. 3.1 below). The

 Fig. 3.1. TSS 77. A dia
 gram on a fragment of a

 round tablet from Old

 Babylonian Kisurra.
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 124 Jöran Friberg

 information that this fragment is from Old Babylonian
 Kisurra, and not from Early dynastic Suruppak, as was
 commonly believed earlier, is due to Krebernik, NABU
 2006: no. 15.

 A square with its diagonals is depicted on the Old
 Babylonian tablet YBC 7289 (Friberg, MSCT 1, Fig.
 16.7.2; Fig. 3.2 below). An accurate approximation is
 used for the computation of the length of the diagonal
 when the side of the square has the length 30. The way
 in which this accurate approximation can have been
 obtained is discussed in Friberg, Amazing Traces, 397.

 The copy of YBC 7289 first published by Neuge
 bauer and Sachs in MCT, 42, shows the square stand
 ing on one of its corners, with the diagonals horizontal
 and vertical. Subsequently, the same copy has been
 republished on numerous occasions in various books
 and papers, with the square oriented in this way. This
 is unfortunate, since orienting a square like this is in
 violation of an easily observed convention in Old
 Babylonian mathematical texts, according to which
 representations of triangles, squares, rectangles, trape
 zoids, etc., always are oriented with one side, the
 'front' or 'upper front,' facing left, as for instance, the
 triangle in Fig. 2.1 above, as well as the hexagon and
 the heptagon in Fig. 5.1 below. (Note, however, that
 this Old Babylonian convention does not apply in the
 case of the hexagon in the Neo-Sumerian text MS
 1983/2 (Fig. 5.2 below). The correct orientation of the

 drawing of a square on YBC 7289 has been published
 before by the present author, for instance in Amazing
 Traces, Fig. 16.7.2. See now also Robson, MAI, 111,
 Fig. 4.8.

 A geometrical doodle on the back of an administra
 tive list from Old Babylonian Mari has the form of a
 square divided into 16 smaller squares, all with diago
 nals. See Fig. 1.1, bottom. (Ziegler 1999, no. 37.)

 MS 3050 (Friberg, MSCT 1, Fig. 8.2.2; Fig. 3.3
 below, left) is a round tablet featuring a square with
 diagonals, inscribed in a circle. It is hard to make
 sense of the scattered numbers recorded inside and

 outside the diagram. It is likely, however, that the text
 is the result of a school boy's attempt to compute the
 areas of the various parts into which the circle is
 divided by the square when, as usual, the length of the
 circumference of the circle is given. Interestingly,
 problem #37 in the demotic mathematical papyrus
 P. Cairo (Friberg, Unexpected Links, Sec. 3.1 k) is of
 precisely this kind, except that the length of the di
 ameter, rather than the circumference, is given.

 Two approximations to sqs. 2 (the square-side,
 alternatively square root of 2), 1;25 and 1;24 51 10,
 are mentioned in two Old Babylonian tables of con
 stants (TMS 3 and NSe = YBC 7243), in the following
 way:

 1 25 constant of the diagonal of a
 square TMS 3 31

 1 24 51 10 the diagonal of an equalside NSe 10

 The accurate approximation sqs. 2 = 1;24 51 10 is
 explicitly mentioned also in YBC 7289 (Fig. 3.2
 above), where it is inscribed along the diagonal of
 the square in the diagram, and where it is used to
 compute the diagonal d of a square with a side of
 length 30:

 d = 1;24 51 10 • 30 = 42;25 35.

 The value 42 25 35 is recorded just below the
 diagonal in the diagram.

 Fig. 3.2. YBC 7289. An Old Babylonian
 tablet showing a square and its diagonals.

 Fig. 3.3. MS 3050. A square
 with diagonals
 inscribed in a circle.

 Fig. 3.4. BM 15285 ##36 and 40. A square divided
 into various pieces. What is the area of each piece?
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 It is interesting that 1;24 51 10 is, essentially, the
 same accurate approximation to sqs. 2 as the one used
 in Ptolemy's Syntaxis 1.10! (See Friberg, Amazing
 Traces, Sec. 16.4, and Heath, HGM II, 276-278.)
 Indeed, the preliminaries to the Table of Chords in
 Book 1.10 of Ptolemy's Syntaxis or the Almagest (150
 AD) include the computation of the side of a regular
 polygon inscribed in a circle, expressed as a multiple
 of the 120th part of the diameter of the circle, when
 the regular polygon in question has 10, 5, 6, 4, or 3
 sides. (This is equivalent to computing the chords of
 36°, 72°, 60°, 90°, and 120°.) One of the approxima
 tions mentioned by Ptolemy is

 sqs. 7200 = 84;51 10.

 Since, 7200 = 2 ■ 3600 = 2 • sq. 60, the corresponding
 accurate approximation to sqs. 2 is

 sqs. 2 = 84;51 10 / 60 = 1;24 51 10.

 The diagram of a square with four inscribed circles
 in the Early Dynastic text TSS 77 (Fig. 3.1 above)
 reappears in the well known Old Babylonian geomet
 ric theme text BM 15285, in one of 41 exercises
 where, in each case, a square with the side 1 (• 60) is
 divided into several pieces by a number of straight or
 curved lines, and the goal of the exercise is to compute
 the areas of all the pieces (see Friberg, Amazing
 Traces, Figs. 6.2.2-6.2.3; Robson, MAI, Fig. 2.10).

 Although the statement of the problem in BM
 15285 # 36 is lost, it is clear that what is asked for is
 the area of each small piece of the divided square: four
 circles, one 'ear-of-sammw' (a "concave square"), four
 half concave squares and four quarter concave squares,
 in the case when the side of the whole square is given
 as 1 • 60 (ninda).

 Fortunately, the corresponding statement in # 40 of
 a more complicated variant of the same problem is
 fairly well preserved.

 No solutions are offered in the text to the stated

 problems in BM 15285. In the case of problem # 36 it
 is impossible to know if
 the school boy who was
 asked to find the answer

 to the problem was sup
 posed to use entries from
 a geometric table of con
 stants, or if he was sup
 posed to start from
 scratch. In the latter

 case, he could find, for
 instance, the area of the
 central concave square
 as the area of the cen
 tral small square minus
 the combined area of
 four small quarter cir
 cles. In other words, us

 ing the well known Old Babylonian rule for the com
 putation of the area of a circle, he could compute the
 area of the concave square as

 y4(concave square) = sq. 30 - 4 • 1/4 • ;05 ■ sq. (3 • 30)
 = sq. 30 - ;45 ■ sq. 30 = ; 15 ■ sq. 30 = 3;45.

 The story does not end with the Old Babylonian
 text BM 15285 #36. Indeed, Robson in Festschrift
 Slotsky has published the Neo-Babylonian tablet BM
 47431 (Fig. 3.5 below) with a diagram on the obverse
 showing four circles inscribed in a square, and with a
 brief text on the reverse giving an explicit answer to
 an (unstated) problem of the same type as the explic
 itly stated problem in BM 15285 #36.

 In spite of the apparent similarity, there are pro
 nounced differences between the Old Babylonian text
 BM 15285 #36, and the Neo-Babylonian text BM
 47431. Thus, while the side of the square in the former
 text is 1 • 60 ninda (1 ninda or 'rod' = c. 6 m), the side
 of the square in the latter text is 1 • 60 cubits (1 cubit
 = c. 1/2 m). Moreover, while the sizes of the pieces in
 the former case were supposed to be expressed in
 terms of area measure, the sizes of the pieces in the
 latter case are given in terms of "common seed meas
 ure" (see Friberg, BaM 28, Sec. 1 and Sec. 6 b). The
 arbitrarily fixed relation between area measure and
 common seed measure (csm), expressed either as the
 amount of seed nominally needed to seed a certain unit
 of area or, conversely, as the area seeded by a certain
 capacity unit of seed, can be expressed in various
 ways, for instance as follows:

 1 pänu (pi) of seed (csm) corresponds to 3 • sq. (1 -60
 cubits), or
 sq. (1 • 60 cubits) corresponds to 2 sütu (ban) of seed
 (csm).

 The following factor diagram for the Neo-Babylonian
 system of capacity measure shows how various units
 of that system were related to each other:

 obv.  rev.

 / banSe*I}y^' \ MS- S3/ \
 —Vj^Tsila sc.if 4- ta kip-pat\

 1 2' sila se\n. 4 sag.du pa-td

 7 2' n. se.i^. 4 sag sal- hu

 7 2' n. se.n. gan. zk. fmi

 pab.pab 2b4nse.n. mes-ljat a.sa
 a-na a- ma- ri sa lu sa^Wi

 Fig. 3.5. BM 47431. A square divided into various
 pieces. What are the seed measures of the pieces?

 se.n. or se.numun 'seed'

 us.sa.du 'surrounding'

 kippatu 'circle'

 patru 'dagger'
 salhu 'outer wall1

 2' = 1/2, n. = ninda 'rod'

 gän.zä.mi 'sammM-field'

 pab.pab 'total, sum'
 mes-hat 'size'

 a.sä 'field'
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 126 Jöran Friberg

 basket c. 1 liter piece of bread
 6 6 „ 10 , .

 C(NB) : panu -—- sutu qu -« akalu

 pi ban sila ninda

 Therefore, the answer on the reverse of BM 47431
 to the (unstated) question can have been computed in
 a number of steps, as follows (cf. Robson, Festschrift
 Slotsky, 219-220):

 1. The common seed measure of the square field surrounding the circles is 2 ban (csm) rev. line 1
 2. The diameter of each one of the inscribed circles is 30 cubits obv., diagram

 The circumference of each one the 4 circles is (appr.) 3 • 30 cubits = 1 30 cubits
 The combined area of the 4 circles is (appr.) 4 • ;05 • sq. (1 30 cubits) = 45 00 sq. cubits
 The seed measure of the 4 circles is (appr.) ;45 • 2 ban = 1 1/2 ban = 1 ban 3 sila rev. line 2

 3. The quarter-arc of each one of the circles is 1/4 ■ 1 30 cubits = 22;30 cubits obv., diagram
 The area of a concave square with this arc is (appr.) ;26 40 • sq. (22;30 cubits) = 3 45 sq. cubits
 The corresponding seed measure is (appr.) ;03 45 • 2 ban = 7 1/2 ninda

 4. The seed measure of the 4 'dagger'-like concave triangles is 4 • 1/2 • 7 1/2 ninda = 1 1/2 sila rev. line 3
 5. The seed measure of the 4 'outer-wall' concave triangles is 4 • 1/4 • 7 1/2 ninda = 7 1/2 ninda rev. line 4
 6. The seed measure of the central concave square is 7 1/2 ninda rev. line 5
 7. The total seed measure is 1 ban 3 sila + 1 1/2 sila + 7 1/2 ninda + 7 1/2 ninda = 2 ban rev. line 6

 Note the use in these computations of the following
 well known 'constants' (igi.gub):

 5 the 'constant for a circle'

 26 40 the 'constant for an (ear-of-).vamm«-field (con
 cave square).

 The constant 5 for a circle appears in 7 Old Babylonian
 tables of constants (see Robson, Mesopotamian Mathe
 matics, Sec. 3.1) and also in the Neo-BabyIonian table
 of constants CBS 10996 (see Sec. 11 below). The
 constant 26 40 for a concave square appears in 4 Old
 Babylonian tables of constants (see Robson, Mesopo
 tamian Mathematics, Sec. 3.7). It is likely that it also
 appeared in the now lost part of the Neo-Babylonian
 table of constants CBS 10996 (Sec. 11 below).

 4. n = 5: Regular Pentagons and Pentagrams

 An entry in TMS 3, an Old Babylonian table of
 constants from the ancient city Susa (in western Iran),
 mentions in the following way the 'constant' for a '5
 front' (a regular pentagon), meaning the area of the 5
 front when the side length is 1 (■ 60):

 1 40 igi.gub sä sag.5
 1 40 the constant of a 5-front

 TMS 3 26

 The value 1 40 is easily ex
 plained: If the side length of the
 pentagon is 60, then the length of
 the circumscribed circle is (appr.) 5
 • 60. Therefore, the radius of the
 circumscribed circle is (appr.) 5 •
 10 = 50. Consequently, the 5-front
 can be divided into five triangles,

 all of which have one side of length 60 and two sides
 of length 50. The area of one such triangle is 30 ■ 40
 = 20 (■ 60). Hence the area of the 5-front is 1 40 (• 60).

 There is no other known occurrence of a regular
 pentagon in a Mesopotamian text. However, VA 5953
 (Friberg, Amazing Traces, Fig. 7.9.7; see Fig. 4.1
 above) is an Old Babylonian mold showing in relief
 five entangled bearded men forming a 5-sided star
 figure (a pentagram) enclosing a regular pentagon.

 A much older Mesopotamian example of a picture
 of a pentagram is UE 3, 398 (Friberg, Amazing Traces,
 Fig. 7.9.2; Fig 4.2 below), a copy of a seal imprint
 from a layer beneath the royal cemetery at Ur, dated to
 the proto-Sumerian Jemdet Nasr period around the
 beginning of the 3rd millennium BC. Note the appear
 ance in the lower left corner of a pentagram drawn in
 one uninterrupted line.

 Fig. 4.1. VA 5953. An Old
 Babylonian mold showing
 five entangled bearded men
 forming a pentagram.

 Fig. 4.2. UE 3, 398. A pentagram appearing in a seal
 imprint from the proto-Sumerian Jemdet Nasr period.
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 Actually, a pentagram appears in this seal imprint
 sooner for calligraphic than for artistic reasons. In
 deed, in the proto-cuneiform script used in Mesopota
 mia in the Jemdet Nasr period, the sign UB had the
 form of a pentagram. (Several of the other images in
 the seal imprint in Fig. 4.2 are also proto-cuneiform
 signs.) Just as in this seal imprint, UB appears fre
 quently in proto-cuneiform texts from Jemdet Nasr
 together with the sign AB. An example, borrowed
 from Englund and Gregoire, MSVO 1, is shown in
 Fig. 4.3.

 5. n = 6: Regular Hexagons

 Another entry in the Old Babylonian table of con
 stants TMS 3 mentions the 'constant' for a '6-front' (a
 regular hexagon), meaning the area A of the 6-front
 when the side length is 1 (• 60):

 2 37 30 igi.gub Sä sag.6
 2 37 30 the constant of a 6-front TMS 3 27

 In view of the discus

 sion above of the case n

 = 3, this value can be
 explained as

 A = 6 • 1/2 • (1 - 1/8)
 •sq. 60 = 6 -26 15 = 2
 37 30.

 A regular hexagon
 with sides of length 30
 is depicted on the ob
 verse of TMS 2 (Fri
 berg, MSCT 1, Fig.
 8.2.15; Fig. 5.1 below),
 an Old Babylonian tab
 let from Susa. As indi

 cated by the number 6
 33 45 recorded in the

 left-most equilateral
 sub-triangle, the area of a regular hexa
 gram with this side length could be
 computed as follows:

 A = 6 • 1/2 • (1 - 1/8) • sq. 30 = 6 • 26
 15 • 1/4 = 6-6 33;45 (= 39 22;30).

 MS 1983/2 (Friberg, MSCT 1, Figs.
 8.1.12, 8.2.14; Fig. 5.2 below) is a
 large fragment of a mathematical tab
 let, probably from the Neo-Sumerian
 Ur III period.

 The tablet is inscribed on the ob

 verse with a diagram showing a trape
 zoidal field divided into five parallel
 stripes with areas forming an arithme
 tic progression, and on the obverse (ac
 cording to a likely reconstruction) with

 Fig. 4.3. Englund and Gregoire, MSVO 1,
 220 = IM 55587. A proto-cuneiform

 text from the proto-Sumerian
 Jemdet Nasr period.

 the image of a regular hexagon with a circle in the
 middle, probably some kind of geometric assignment.

 Fig. 5.1. TMS 2. An Old Babylonian tablet from
 Susa with images of a hexagon and a heptagon.

 Fig. 5.2. MS 1983/2. A mathematical tablet, probably
 from the Neo-Sumerian Ur III period.
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 6. n = 7: Regular Heptagons and Two Kinds of
 7-Sided Star Figures

 A third entry in the Old Babylonian table of con
 stants TMS 3 mentions the 'constant' for a '7-front' (a
 regular heptagon), meaning the area A of the heptagon
 when the side length is 1 (• 60):

 3 41 igi.gub sä sag.7
 3 41 the constant of a 7-front TMS 3 28

 There is also an image of a regular heptagon on the
 reverse of TMS 2, the tablet from Susa shown above
 in Fig. 5.1. The heptagon has the given side length 30,
 and therefore the radius r of the circumscribed circle

 can be computed as
 r = (appr.) 1/6 • 7 • 30 = 35.

 That is, of course, why the value 35 us '35, the length'
 is recorded above a radius of the heptagon on the
 reverse of TMS 2.

 One would now expect to find the total area of the
 upper triangle or of the whole heptagon recorded in
 the diagram. That is not the case. Instead one finds a
 somewhat cryptic inscription, interpreted as follows
 by Robson in Mesopotamian Mathematics, 49:

 [nigin sag sä] sag.7
 a.na 4 te-si-ip-ma
 si-in-se-ra-ti ta-na-as-sa-ah-ma a.sä

 [The square of the front] (the side) of the 7-front
 by 4 you repeat, then
 the twelfth you tear out, then the field (the area).

 What this means is that the area of a heptagon with the
 side 5 can be computed as

 A = (appr.) 4 • sq. ,v - 1/12 of 4 ■ sq. s = 4 • sq. s - ;20
 ■ sq. s = 3;40 • sq. s.

 Thus, you get the area of the heptagon if you multiply
 the square of the front by 4, and reduce the result by
 a twelfth of its value. The computation rule is a handy
 variant of the more formal rule A = sq. s • 3;40.
 Compare the entry '3 41 the constant of a 7-front' in
 TMS 3 28, where the value 3 41 probably had been
 computed as follows. When 5 = 1 (• 60), then

 A = (appr.) 7 • 30 • sqs. (sq. 1 10 - sq. 30) = 7-30-20
 ■ sqs. 10 = (appr.) 7-10-310 = (appr.) 3 41 (• 60).

 CBS 1766. Description of the Diagram and the Table

 A photo of CBS 1766 was first published by
 Hilprecht in his Explorations on p. 530, where the text
 was loosely characterized as an "astronomical tablet
 from the Temple Library."

 Subsequently, CBS 1766 was largely ignored for
 more than a century, until Horowitz saved it from
 oblivion by republishing a photo of it in JANES 30 pp.
 37-53, together with a transliteration of the text and an
 attempted interpretation of it.

 A year later, in NABU 2007/2, C. Waerzeggers and
 R. Siebes suggested alternative transliterations of sev

 eral crucial words in the text and an interesting new
 interpretation of the whole text. The discussion below
 of the text is largely based on their new interpretation.

 The reverse of the tablet is completely destroyed.
 On the obverse, in a box in the upper left corner,
 which is fairly well preserved, there is a diagram of a
 7-sided star figure (a heptagram), drawn in one unin
 terrupted line consisting of a chain of 7 straight lines
 of equal length), and in the lower half of the obverse
 there is a numerical table. The rest is empty. By luck,
 although there are some missing parts of the clay
 tablet, nothing seems to have been lost of the inscrip
 tion on the lower half of obverse. See Fig. 6.1 below.

 The star figure on the obverse of CBS 1766 is
 inscribed in a double circle. Both the star figure and
 the circles are drawn without much care, and without
 the use of compass and ruler. The seven points of the
 star figure are numbered, from 1 to 7, and briefly
 labelled in the following way:

 1 qu-ud-mu the foremost
 2 *sa^-mu-sum the next

 3 [sal-su qat-nu] [the third, thin]
 4 e-ba-nu the one constructed by (the god)

 These are known names for seven strings of the Meso
 potamian harp or lyre. See the further discussion of
 this topic in the 10th section of the present paper.
 Note: In Babylonian mathematical texts, the essential
 components of geometric figures are their straight or
 curved segments, never their vertices. Cf. the discus
 sion of Babylonian "metric algebra diagrams" vs. Greek
 "lettered diagrams" in Friberg, Amazing Traces, Sec.
 1.1. Therefore, it is likely that the numbers inscribed
 around the star figure in CBS 1766 should be under
 stood as components of number pairs defining the
 seven sides of the star figure, not as single numbers
 defining the seven points of the star figure!

 The table on the obverse of CBS 1766 contains 11

 columns, organized as follows: Column 1 is empty,
 columns 2-3 are both inscribed with 7 lines of number

 pairs. Column 4 is again empty, while columns 5-6 are
 inscribed with only 1 line each of number pairs.
 Apparently, the writing of numbers in the table was
 interrupted here and never finished. Indeed, the re
 maining columns are empty, except for the last col
 umn, which contains traces of a few words (not num
 bers). The interruption may have been unintentional,
 but another possibility is that the text in its present
 state was an assignment, and that a school boy had
 been asked to fill in the remaining numerical parts of
 the table, which he never did.

 There is a (somewhat) readable line of text as a
 heading over columns 1-4 in the table. The headings

 5 ha-an-su

 6 re-rbP uh-ri

 1 sal-su ruh-rP

 Ea

 the fifth

 the fourth behind

 the third behind.
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 Fig. 6.1. CBS 1766. A 7-sided star figure and a numerical table. Photo and conform
 transliteration. Published here with the kind permission of G. Frame.

 over the other columns of the table, if any, are unread
 able, except for the heading over the non-numerical
 entries in the last column, but that too is badly read
 able.

 The line of text above columns 1-4 is read as

 follows by Horowitz, JANES 30, pp. 37-53:
 IM fi-im-da-tum zi-qi-pu iq-r[i-bu'! ...] or ik-ta[l-du'! ...]
 pairs of altitudes which appro[ached ...] or rea[ched ...].

 No serious attempt was made by Horowitz to explain
 the meaning of this line of text.

 CBS 1766. A Geometric

 Explanation of the Num
 ber Pairs in the Table

 In column 2, the first
 inscribed column on CBS

 1766, the second number
 in each pair is equal to
 the first number in the

 next pair. Thus, the first
 pair 2, 6 is followed by
 the second pair 6, 3, the
 third pair 3, 7, and so on.
 To make sense of this

 observation, assume that
 In column 2, the pair
 2, 6 stands for the
 side in the 7-sided

 star figure which
 goes from the point
 labelled 2 to the point
 labelled 6, the next
 pair 6, 3 stands for
 the side of the star

 figure which goes
 from the point la
 belled 6 to the point
 labelled 3, and so on.

 See Fig. 6.2, top. Thus,
 the seven number pairs
 in column 2 can be inter

 preted as
 A description of how
 to draw the whole 7

 sided star figure by
 use of an uninter

 rupted chain of
 straight lines running
 through the points la
 belled 2, 6, 3,7, 4, 1,
 5, 2, in this order.

 Now, if this is the
 correct interpretation of
 the seven number pairs
 in the first inscribed col

 umn on CBS 1766, what
 is then the corresponding
 interpretation of the seven

 number pairs in the second inscribed column, column
 3? It ought to be

 A description of how to draw a certain diagrammatic
 figure by use of a set of (non-connected) straight lines
 running through the pairs of points labelled (1, 7), (5,
 4), (2, 1), (6, 5), (3, 2), (7, 6), and (4, 3).

 See again Fig. 6.2, top. This diagrammatic figure is
 clearly a regular heptagon, that is a polygon with 7
 equal sides, which can be inscribed in a circle.

 Assuming that this interpretation is correct, it re
 mains to explain what the precise relation is between
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 1  consecutive parallel, nearby
 sides of the

 7/3 star figure

 2,6
 6.3
 3,7
 7.4
 4, 1

 1.5
 5,2

 sides of the

 heptagon

 1,7
 5.4
 2,1
 6.5
 3.2
 7.6
 4.3

 parallel, distant
 sides of the

 heptagon

 5,4
 [7, 6]
 [2,1]
 [4, 3]
 [6, 5]
 [1,7]
 [3, 2]

 consecutive

 sides of the

 7/2 star figure

 7,2
 [2, 4]
 [4, 6]
 [6, 1]
 [1,3]
 [3, 5]
 [5, 7]

 Fig. 6.2. Suggested geometric explanation of the four
 preserved tables of number pairs on CBS 1766.

 consecutive parallel, nearby
 sides of the sides of the

 7/3 star figure heptagon

 2,6 1,7
 6,3 5,4
 3, 7 2, 1
 7, 4 6, 5
 4, 1 3,2
 1,5 7,6
 5, 2 4,3

 parallel, distant consecutive
 sides of the sides of the

 heptagon 7/2 star figure

 5, 4 7, 2
 [7, 6] [2, 4]
 [2,1] [4,6]
 [4, 3] [6, 1]
 [6,5] [1,3]
 [1,7] [3,5]
 [3, 2] [5, 7]

 the two number pairs in each line of columns 2-3. In
 particular, what is in the case of the first line of the
 two columns the relation between the side from 2 to 6

 in the star figure and the side from 1 to 7 in the
 heptagon? The answer is obvious, since the two sides
 are parallel to each other and go in the same direction.
 Similarly, in the case of the second line, the side from
 6 to 3 in the star figure is parallel to the side from 5
 to 4 in the heptagon and goes in the same direction.
 And so on. (It is assumed here that, like the star figure,
 the heptagon is drawn in one uninterrupted chain of
 straight lines, counter-clockwise, so that each side of
 the heptagon has a given direction.) Therefore, the
 number pairs in the first two inscribed columns on
 CBS 1766 quite explicitly demonstrate that

 For each side in the 7-sided star figure there is a
 parallel side in the heptagon going in the same direc
 tion.

 Note that because of its manner of construction, the
 7-sided star figure, like the regular heptagon, can be
 inscribed in a circle, that is, both figures are "cyclic."
 The diagram on the obverse of CBS 1766 shows the 7
 sided star figure being inscribed in a double circle, but
 that is probably just an embellishment (if not to ac
 commodate further text).

 In Fig. 6.2, top, the 7-sided star figure is called a
 "7/3 star figure." What this means is that in order to
 draw the star figure, you can start at one of the
 numbered points, say the point 2, proceed from there
 counter-clockwise to the 3rd point along the circle,
 which is then the point 6, draw a straight line from 2
 to 6, and then repeat the procedure until the diagram
 returns to the starting point. The result will be the 7

 sided star figure running through the points 2, 6,
 3, 7, 4, 1, 5, 2.

 In a similar sense, the heptagon itself can be
 understood as a "7/1 star figure."

 This observation immediately leads to the fol
 lowing question: What is then a "7/2 star figure?"
 The answer is demonstrated by the diagram in
 Fig. 6.2, bottom. Start, say, at the point 7 and
 proceed from there counter-clockwise to the 2nd
 point along the circle, which is then the point 2,
 and draw the straight line from 7 to 2. Repeat the
 process until the diagram returns to the starting
 point. The result will be a new kind of 7-sided
 star figure running through the points 7, 2, 4, 6, 1,
 3, 5, 7, in this order. Now observe that the side
 from 5 to 4 in the heptagon is parallel to the side
 from 7 to 2 in the 7/2 star figure. It is likely that
 this observation explains the two pairs 5, 4 and 7,
 2 in the first line of columns 5-6 on CBS 1766.

 Consequently, it is likely that the unfinished sec
 ond pair of inscribed columns was intended to
 show, quite explicitly, that

 For each side in the 7/2 star figure there is a parallel
 side in the heptagon going in the same direction.

 See again Fig. 6.2, bottom. (It is not clear why the pair
 5, 4 precedes the pair 7, 2, so that the order of the two
 columns is not the same in the case of the 7/2 star

 figure as in the case of the 7/3 star figure.)
 Since the numerical table on CBS 1766 was left

 unfinished, it is impossible to know what a third pair
 of inscribed columns (columns 8-9) could have con
 tained. Maybe they would have been concerned with a
 "7/4 star figure." Now, it is easy to see that a 7/4 star
 figure is identical with a 7/3 star figure running in the
 opposite direction, through the points 2, 5, 1, 4, 7, 3,
 6, 2. Similarly, a 7/5 star figure is just a 7/2 star figure
 running in the opposite direction, through the points 7,
 5, 3, 1, 6, 4, 2, 7, and a 7/6 star figure is the same as
 a heptagon running in the opposite direction, through
 the points 1, 2, 3, 4, 5, 6, 7, 1.

 It is now time to return to the meaning of the line
 of text over columns 1-4. It is suggested here, very
 tentatively, but in essential agreement with one of the
 possibilities suggested by Horowitz, that there are
 three distinct headings in columns 1, 2, and 3 (spilling
 over into column 4), and that these headings should be
 read as, respectively,

 col. 1: riM1 directions''

 col. 2: si-im-da-tum pairs
 col. 3: zi-qi-pu iq-r[i-bu] the stakes are close together.
 The "pairs" mentioned in the heading over col. 2

 can, of course, be understood as the number pairs from
 2, 6 to 4, 2 specifying the 7 sides of the 7/3 star figure.

 Finally, since stakes are usually straight (and up
 right), it is possible that in this text the term 'stakes'
 stands for 'straight lines,' and that the meaning of the
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 Photo: F. Al-Rawi

 Fig. 7.1. IM 51979. An Old Babylonian(?) tablet
 showing an 8/3 star figure with its diagonals.

 Al-Rawi

 Fig. 7.2. An Old Babylonian tablet from Haddad with
 an 8/2 star figure and scribbled cuneiform signs.

 line of text over column 3 is that the straight
 lines making up the sides of the 7/3 star figure
 are nearby the straight lines parallel to them,
 which make up the sides of the heptagon, and
 which are specified by the number pairs in
 column 3. See Fig. 6.2, top.

 In contrast to the situation in Fig. 6.2, top,
 the situation in Fig. 6.2, bottom, is that the
 straight lines making up the sides of the hepta
 gon are distant from the straight lines parallel
 to them, which make up the sides of the 7/2
 star figure, and which are specified by the
 number pairs in column 6.

 7. n = 8: Two Old Babylonian? Tablets
 with Two Kinds of 8-Sided Star Fig
 ures

 IM 51979 (Friberg, Amazing Traces, Fig.
 7.8.2; Fig. 7.1 above) is a roughly made tablet,
 possibly Old Babylonian, inscribed exclusively
 with a diagram showing an 8/3 star figure,

 drawn in one uninterrupted line, and
 its 4 diagonals.

 A previously unpublished Old
 Babylonian tablet from Haddad (Fig.
 7.2) is inscribed with an 8/2 star
 figure and its 4 diameters. The 8/2
 star figure cannot be drawn with
 one uninterrupted line. Instead it is
 composed of 2 squares.

 The meaning of the many scrib
 bled cuneiform signs inside the fig
 ure on the obverse of this tablet,
 and similarly scribbled signs on the
 reverse, is not at all clear.

 8. n = 12: A 12-sided Star Fig
 ure in a Seleucid Astrologi
 cal Text

 The Seleucid astrological text O
 176, in which a 12-sided (and 12
 pointed) star figure appears in an
 isolated position, was first published
 by Thureau-Dangin in TCL 6, text
 13. A commentary appeared much
 later, in Rochberg-Halton, ZA 77.

 Names of months and planets are
 inscribed in the 12 points of the star
 figure (see Fig. 8.1 below). How
 ever, there is no obvious connection

 (Abbreviated) month names:

 BÄR (I)
 GU4 (II)
 SIG4 (III)

 SU (IV)
 NE (V)
 KIN (VI)

 DU6 (VII)
 APIN (VIII)
 GAN (IX)

 AB (X)
 ZIZ (XI)
 Se (xii)

 (Abbreviated) planet/god names:

 DIL.BAT (Venus/Ishtar) U§ (Saturn/Ninurta) GENNA(?) (also Saturn?)
 GU4 (Mercury/Nabü) SAL (Mars/Nergal)

 Fig. 8.1. O 176. A twelve-sided star figure with inscribed and
 circumscribed circles, month names and planet (or god) names.

 The astrological meaning of this diagram is unknown.
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 between these names of months and planets on one
 hand and the astrological text on the tablet on the
 other hand.

 The 12-sided star figure can be more distinctly
 characterized as a 12/4 star figure, since each side in
 the star figure goes from one of the 12 points of the
 star to a point 4 steps removed from it along the circle.
 The star figure cannot be drawn with one uninter
 rupted line. Instead, it is composed of 4 equilateral
 triangles. Note the presence of both a circumscribed
 and an inscribed circle.

 9. A Starlike Doodle on the Reverse of an
 Early Dynastic Ilia Lexical Text

 Loosely associated with the theme of polygons and
 star figures on Mesopotamian clay tablets is a doodle

 on the reverse of the lexical text VAT 9128 from Early
 Dynastic Ilia Shuruppak, 2600-2500 BC. The photo of
 the reverse of the clay tablet in Fig. 9.1 below (avail
 able online at cdli.ucla.edu, P010673) shows a last
 half-line of the lexical text, and as space fillers on the
 otherwise empty reverse a drawing of a grazing ante
 lope and a doodle in the form of a kind of non-regular
 6-sided star figure with embellished "diagonals." The
 way in which the doodle was drawn is illustrated in
 Fig. 9.2 below.

 Two other examples of quasi-mathematical space
 filling doodles on the reverses of similar texts from
 Early Dynastic Ilia Shuruppak are shown in Friberg,
 MSCT 1, Figs. A6.2I-22.

 10. Names of Strings, Intervals, and Modes on
 an Instrument with 9 Strings

 For the readers' convenience, in this sec
 tion of the paper are brought together some
 well known facts about cuneiform texts men

 tioning names of strings, intervals, and scales
 on a harp or lyre with 9 strings. A knowledge
 of such items is necessary for the proper
 understanding of the meaning of the 7-sided
 star figure and the numerical table on CBS
 1766.

 The names of the 9 strings, in both
 Sumerian and Akkadian, are mentioned in
 columns i-ii of UET VII 126, a Neo-Babylo
 nian fragment of a copy of the 32nd tablet of
 the lexical series Nabnitu 'creation' (Fig. 10.1).
 See Kilmer, Festschrift Landsberger.

 According to this text, five of the nine
 strings are counted from the front (of the
 string instrument), while the remaining strings
 are counted from the rear.

 Fig. 9.1. VAT 9128. The reverse of a lexical text from
 ED Ilia Suruppak with a drawing and a doodle.
 The photo is reproduced here with the kind permission
 of Bildagentur für Kunst, Kultur und Geschichte.

 Fig. 9.2. VAT 9128. The construction in three steps of the doodle.
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 § 1

 §2

 qud- mu
 sa-mu-su

 sa-al-su

 a- ba
 ha- am
 re-bi uh- ri

 sal-si uh- ri
 si-ni uh- ri- im

 uh- ru- um
 9 pi- it- nu
 pi- is- mu
 i- sar- ti

 i-sar-tun

 ki- it- mu

 si-hi-ip

 sa. di

 sa. us

 sa. 3. sa. sig
 sa. 4. tur

 sa. ki. 5!
 sa.4.a.ga.gul!
 sa.3.a.ga.gul!

 9m*

 0*4- ff'lP g fwA

 f 9m
 jhtr^sr *r ^
 Xi&=

 Fig. 10.1. UET VII 126, a fragment from Ur of a copy of the 32nd tablet of the lexical series
 Nabnltu. The copy is published here with the kind permission

 of the Trustees of the British Museum.

 UET VII 126, cols, i-ii
 sa.di  qud-mu-ü  fore string
 sa.us  sä-mu-su-um  next string
 sa.3.sa.sig  sa-al-su qa-a[t-nu]  third, thin string
 sa.4.tur  a-ba-nu-[u]  fourth, small string

 / Ea-created

 sa.ki.5  ba-am-[su]  fifth string

 sa.4.a.ga.gul  re-bi üh-ri-[im]  fourth rear string
 sa.3.a.ga.gul  sal-si uh-ri-im  third rear string
 sa.2.a.ga.gul  si-ni üh-ri-im  second rear string
 sa.l.a.ga.gul  uh-ru-um  rear string
 [9] sa.a  9 pi-it-nu  nine strings
 [sa.d]u.a  pi-is-mu  ? ? ?

 [sa.si.s]a  i-sar-ti  isartu

 CBS 10996, obv., col. vi
 [1  5  sa  nis tuh-ri]
 [7  5  sa  se-e-ru]
 [2  6  sa  i-sar-tu4\
 [1  6  sa  sal-sd-tu4]
 [3  7  sa  em-bu-bu]
 [2  7  sa  4-tu]
 [4  1  sa  sub.murubj
 [1  3  sa  gis.sub.ba]
 [5  2  sa  murub4-/«4]
 2  4  [sa  ti-tur] murub4-ta
 6  3  sa  kit-mu

 3  5!  sa  ti-tur i-sar-tu.
 4

 7  4  sa  pi-tu4
 4  6  sa  ser-du

 sa qud-mu-ü  ü  sa  5-su  1  5  sa  nis tuh-ri

 sa 3! uff-ri  ü  sa  5-su  7  5  sa  se-e-ru

 sa sa-ge6  ü  sa  4 uff-ri  2  6  sa  i-sar-tu 4
 sa qud-mu-ü  ü  sa  4 uh-ri  1  6  sa  sal-sa-tu4
 sa 3-su sig  Ü  sa  3-sü uh-ri  3  T  sa  em-bu-bu

 sa sa-ge6  Ü  sa  3-sü uff-ri  2  T  sa  4-tu

 sa de-a.dii  Ü  sa  qud-mu-ü  4  1  sa  sub.murub4
 sa qud-mu-ü  Ü  sa  3-sü sig  1  3  sa  gis.sub.ba
 sa x 5-sü  Ü  sa  sa-ge6  5  2  sa  murub4-ta
 sa sa-ge6  Ü  sa  de-a.du  2  4  sa  ti-tur murub.-?M

 4

 [x X x]
 [x X x]
 [x X x]
 [x x x]

 [si-ft\i-ip i-sar-tum sihip isarti
 [ki-i]t-mu kitmu
 [si-hi-ip k\i-it-mu sihip kitmi
 [em-bu-bu]-um embübu

 The names of 7 of the 9 strings reappear in the
 Neo-Babylonian table of constants CBS 10996, col. vi
 (Kilmer, Or 29; see section 11 below), together with
 names for two alternating sets of 7 string pairs
 (dichords) each.

 'rise of heel(?)'
 'song'
 'normal'

 'third'

 'reed-pipe'
 '4th'

 'fall of middle'

 'lot, share'
 'middle'

 'bridge, middle'
 'cover'

 'bridge, normal'
 'opening'
 'lament'

 ü means 'and'

 sa-ge6 = sa-müsu

 sig = qatnu 'thin'

 du = banü 'created'

 murub4-ta = qablitu 'middle'
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 sa 4 uh-ri

 sa 3-sü sig
 sa 3 -sü uh-ri

 sa ''e-a.dii

 ü sa 3-sü sig
 ü sa 5-sü

 ü sa [''e-a.dü
 ü [sa 4 uh-ri

 6 3

 [3 5
 7 4

 4 6

 sa [kit-mu]

 sa ti-tur i-sar-tu4]
 sa pi-tu4]
 sa ser-du\

 The column (partly reconstructed and corrected
 above) begins with a brief version of the list of 2 times
 7 dichords in terms of only the numbers of the strings,
 but then, as an afterthought, repeats the list with the
 dichords expressed also in terms of the full names of
 the strings.

 The names given for the dichords remain to this
 day largely unexplained. (The reading tuh-ri 'heel,
 Achilles tendon?' is due to Mirelman and Krispijn,
 Iraq 71.)

 In Fig. 10.2 below, top and bottom, one "primary"
 set of 7 dichords is identified with the seven sides of

 a 7/3 star figure, while a "secondary" set of 7 dichords
 is identified with the seven sides of a 7/2 star figure.
 Note that while this way of visualizing the two sets of
 7 dichords mentioned in col. i of CBS 10996 is not

 known from any Babylonian text, it still is, of course,
 inspired by the diagram and the table on CBS 1766.

 Note also that in Fig. 10.2, below, the sides of the
 7/2 star figures are oriented in the same way as in the
 corresponding diagram in Fig. 6.2 above. In three
 cases, marked by asterisks, the two numbers defining
 a dichord correspond to a side in the 7/2 star figure
 with an opposite direction. This appears to be a mis
 take made by the author of the text.

 1,  5

 2,  6 =  1,  5  +

 3,  7 =  2,  6  +

 4,  1 =  3,  7  +

 5,  2 =  4,  1  +

 6,  3 =  5,  2  +

 7,  4 =  6,  3  +

 Note, finally, that in col. vi of CBS 10996, the first
 set of dichords is ordered lexicographically rather than
 in the order corresponding to successive sides of the
 7/3 star figure. More precisely, the 7 dichords in the
 first set succeed each other in the following way:

 (8 = 1 mod 7)

 Therefore the 7 sides of the 7/3 star figure correspond
 ing to successive primary dichords are obtained from
 each other through repeated rotation by 1/7 of a full
 revolution.

 Similarly, the 7 dichords in the second set succeed
 each other in the following way:

 5, 7*
 6, 1* = 5, 7 + 1, 1 (8=1 mod 7)
 7, 2* = 6, 1 + 1,
 1, 3 = 7, 2 + 1, 1 (8=1 mod 7)
 2, 4 = 1, 3 + 1,
 3, 5 = 2, 4 + 1,
 4, 6 = 3, 5 + 1,

 Therefore also the 7 sides of the 7/2 star

 figure corresponding to successive second
 ary dichords are obtained through repeated
 rotation of the first side by 1/7 of a full
 revolution.

 Note: In Vitale, UF 14, 254, another way
 of visualizing the two sets of 7 dichords
 mentioned in col. i of CBS 10996 by use of
 7/2 and 7/3 star figures is only superficially
 related to the method of presentation in Fig.
 10.2 above, which is based on the testi
 mony of the text CBS 1766. Vitale was, of
 course, unaware of the existence of CBS
 1766.

 A key text for the understanding of
 Babylonian music theory is UET VII 74+
 (Gurney, Iraq 56; Dumbrill, Archaeomusi
 cology, 48), a small fragment of an Old
 Babylonian text with two explicit modal
 retuning algorithms for a string instrument
 with nine strings (see Fig. 10.3). A second,
 newly identified fragment of the same text
 (although not the same clay tablet!) is UET
 VI/3 899, Mirelman and Krispijn, Iraq 71.

 The upper half of col i of UET VII 74+
 contains what may be § 1 of the text, appar
 ently devoted to some kind of enumeration
 of string pairs. It is difficult to say precisely
 how that first paragraph was organized.

 qudmG

 qudmi}

 primary

 1,5  nTS tuhri

 2,6  isartu

 3,7  embubu

 4,1  aid qabli (sub.murub)

 5,2  qablTtu (murub-///^)

 6,3  kit inn

 7,4  pitu

 secondary

 5, 7*  seru

 6,1*  salsatu

 7, 2*  rebutu (4-tu)

 1,3  isqu (gis.sub.ba)

 2,4  titur qablitu

 3,5  titur isartu

 4,6  serdu

 Fig. 10.2. A visualization of the two sets of 7 string
 pairs (dichords) mentioned in CBS 10996.

 primary

 1, 5 riii tuhri

 2.6 isartu

 3.7 embübu

 4, 1 nid qabli (sub.murub)

 5, 2 qablTtu (murub-/«^)

 6.3 kitnm

 7.4 pTtu

 secondary

 5,7* seru

 6, 1* salsatu

 7, 2* rebuilt (4-/m)

 1.3 isqu (gis.sub.ba)

 2.4 titur qabit tu

 3, 5 titur isartu

 4, 6 serdu
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 In the transliteration below of the text of the frag
 ment, missing parts of the text have been tentatively
 reconstructed, within straight brackets.

 UET VII 74+, col. ii

 § 2.5 [sum-ma E'äzä.mi pi-tum] /
 [e-e]m-b[u-bu-um la za-ku] /
 sa-al-s[a-am qa-at-na-am ta-na-sä-ah-ma] /
 e-em-bu-bu-[um iz-za-ku] /

 § 2.6 sum-ma s'5z[ä.mi e-em-bu-bu-um\ /
 ki-it-mu-um [la za-ku] /
 /■e-öe üfy-ri-im [ta-na-sä-ah-ma] /
 ki-it-mu-um iz-[za-ku] /

 § 2.7 sum-ma 8läzä.mi k[i-it-mu-um] /
 i-sar-tum la za-[ka-at] /
 sa-mu-sa-am ü uh-ri-a-a[m ta-na-sä-ah-ma] /
 i-sar-tum iz-za-[ku] /

 end nu-su-[hu-um] /
 sum-ma glSzä.mi /

 §3.1 qä-ab-li-ta-am <la za-ku-ta-am> ta-al-pu-[ut] /
 m üh-ri-a-am te-[ne-e-am-ma] /

 [gläz]ä.mi ki-it-mu-[um] /
 §3.2 [sm/k]-»!« glSzä.mi ki-it-m[u-um] /

 /a za-ku-ta-am t[a-al-pu-ut] /
 [re-fc/] üj}-ri-im te-ne-e-[am-ma] /
 [B'szä.mi e-em-bu-bu-um] /

 [If the sammü (instrument) is pftu,]
 the embübu is unclear,
 the third, thin, you shall tighten, then
 the embübu will be clear.

 If the sammü is embübu,
 the kitmu is unclear,
 the fourth rear you shall tighten, then
 the kitmu will be clear.

 If the sammü is kitmu,
 the isartu is unclear,
 the samussu and the rear you shall tighten,
 then the isartu will be clear.

 Tightening.
 If the sammü is isartu,
 the qablltu <unclear> you played,
 the samussu and the rear you shall loosen,
 then the sammü will be kitmu.

 If the sammü is kitmu,
 the isartu unclear you will play, then
 the fourth rear you shall loosen, then
 the sammü will be embübu.

 By luck, the fragment UET VII 74+ contains both
 the end of one modal retuning algorithm and the
 beginning of another. (A (recursive) algorithm is a
 procedure in several steps, where each step is structur
 ally similar to the previous step.)

 The meaning of the preserved beginning of the
 second modal retuning algorithm can be vaguely ex

 plained as follows:
 § 3.1. If the string instrument is tuned to the isartu mode, and

 the qablltu dichord is dissonant ('unclear'), loosen the
 samussu (= second) string and the rear (= ninth) string.
 The string instrument becomes tuned to the kitmu mode.

 § 3.2. If the string instrument is tuned to the kitmu mode, and
 the isartu dichord is dissonant, loosen the fourth rear
 (= the sixth) string. The string instrument becomes tuned

 to the embübu mode.

 Evidently, as shown in Fig. 10.4
 below, the modes in this retuning algo
 rithm (after the obvious reconstruction)
 follow each other in the same order as

 the sides in the 7/3 star figure.
 The application of the modal re

 tuning algorithm in UET VII 74+, § 3
 presupposes that the string instrument
 has been tuned already to some mode.
 The tuning to the initial generative
 mode, clearly the isartu or 'normal'
 mode, is easily obtained through appli
 cation of the following initial tuning
 algorithm: After string 2 has been tuned
 in some arbitrary but appropriate way,
 string 6 is tuned to make the isartu
 dichord 2, 6 'clear' (in modern terms
 an ascending fifth). Next, string 3 is
 tuned to make the kitmu dichord 6, 3
 'clear' (a descending fourth). In the
 third step, string 7 is tuned to make the
 embübu dichord 3, 7 'clear' (an ascend

 §1

 sa-mu-sa-am u uh- ri- a

 sum-ma gis.za.mi i- sar
 \qa-ab-li-ta-am la- al- t
 I ia-mu-sa-am u ufi-ri-a-am k

 5 2 sa qa- ab- turn
 7 2 sa re- tyu
 2 4 sa .v fqa-ab- li- tim

 ~3~5~
 "5 ~7~

 |sum-ma gis.za.mi pi- turn
 bu-inn la za- ku

 sa- al- stq-am qa-at-na-am tu- na- sa- ah- ma

 e-em-bu-bu\um iz- za- _ ku
 i em-bu-bu- um

 la'
 turn sum-ma gi§.z

 ki- it- mu-um

 re- bi uh- ri- im\ tu-na-sa-ah-ma
 ki- it- mu-um terza- ku

 sum-ma giS.za. mi khit-mu- um
 ka- at_

 Km tu-na-kci-ah-ma
 ku

 i re- bi

 I gis.za.mi

 ne-e-ma

 um

 u-um-mif

 ■-ta-am la za-ku-ta-am t\a-a!-pu-\it
 uh- ri- im am-ma i

 e-em-bu-bu- um |

 §2.5

 §2.6

 §2.7

 §3.1

 §3.2

 Fig. 10.3. UET VII 74, a fragment of an OB
 text from Ur with two retuning algorithms.

This content downloaded from 128.122.149.154 on Thu, 18 May 2017 16:57:27 UTC
All use subject to http://about.jstor.org/terms



 136 Jöran Friberg

 2, 6  isartu

 6, 3  kitmu

 3,7  embubu

 7,4  pitu

 4, 1  nTd qabli

 1,5  nis tuhri

 5,2  qablTtu

 Fig. 10.4. Dichords following each other as the
 sides of the 7/3 star figure.

 2.6 isartu

 6, 3 kitmu

 3.7 embübu

 7 , 4 pTtu

 4, 1 ;zu/ qabli

 1, 5 nis tuhri

 5,2 qablTtu

 ing fifth). Then string 4 is tuned to make the pitu
 dichord 7, 4 'clear' (a descending fourth), string 1 is
 tuned to make the nld qabli dichord 4, 1 'clear' (a
 descending fourth), and string 5 is tuned to make the
 nis tuhri dichord 1, 5 'clear' (an ascending fifth). The
 inevitable end result of this straightforward initial
 tuning algorithm is that the qablltu dichord 5, 2 be
 comes 'unclear' (in modem terms a disharmonic tritone,
 or more precisely, an augmented fourth, alternatively
 a diminished fifth) and cannot be made 'clear' without
 disturbing the given initial tuning of string 2.

 Both this assumed initial tuning algorithm and the
 modal retuning algorithm in § 3 can be explained with
 reference to the 7/3 star figure in Fig. 10.4. As shown
 in the first diagram in Fig. 10.5 below, in the genera
 tive isartu 'normal' mode all the dichords correspond
 ing to the sides of the 7/3 star figure are 'clear', except
 the qablitu dichord 5, 2.

 In the first step of the retuning algorithm in § 3,
 string 2 is 'loosened' so that the qablltu dichord 5, 2
 becomes 'clear.' As a result, the isartu dichord 2, 6
 becomes 'unclear,' and the kitmu dichord 6, 3 becomes
 the initial dichord of this new mode, therefore called
 the kitmu mode. See the second diagram in Fig. 10.6.
 And so on.

 After six steps of this modal retiming algorithm in
 § 3 of UET VII 74+, all strings except string 5 have
 been 'loosened.' The initial interval of this mode is the

 qablitu dichord, and the nis tuhri dichord 1, 5 is
 'unclear.' Therefore, this is called the qablitu mode.
 See the seventh diagram in Fig. 10.5. In the last step
 of the retuning algorithm, finally, string 5 is 'loos
 ened' as well. Now the qablitu dichord is 'unclear'
 again, and the configuration is the same as in the
 initial isartu mode, only with all strings 'loosened.'

 It is not only the retuning algorithm for seven
 modes in UET VII 74+, § 3 that can be explained
 easily in terms of the 7/3 star figure in Fig. 10.4. Also
 the varying distributions of tones and semitones in the
 seven modes can be explained without trouble by
 reference to the 7/3 star figure (although there is no
 known document indicating that the authors of the
 Babylonian texts discussed in the present paper were
 aware of this possibility).

 Consider, for instance, the 7/3 star figure for the
 isartu mode in Fig. 10.5. In that star figure, the
 dichord 2, 3 can be construed as a combination of the
 dichord 2, 6 (a descending fifth) and the dichord 6, 3
 {an ascending fourth). Therefore, the dichord 2, 3 can
 be understood as a regular second (or rather a major
 second, in modern notation a tone). In the isartu mode,
 other regular seconds (or tones) of the same kind are
 3, 4 and 4, 5, as well as 6, 7 and 7, 1. The situation
 is different in the case of the dichord 5, 6, which can
 be construed as a combination of the dichord 5, 2 (an
 augmented ascending fourth) and the dichord 2, 6 (a
 descending fifth). Therefore, the dichord 5, 6 can be
 called a minor second (a semitone). Similarly, the
 dichord 1, 2 can be understood as a combination of the
 dichord 1, 5 (a descending fifth) and the dichord 5, 2
 (an augmented ascending fourth). Consequently, 5, 2
 is another minor second (or semitone).

 In the same way, it can be
 seen that in all the 7/3 star

 figures for the seven modes in
 Fig. 10.4, the 'unclear' dichord
 (dashed) is next to two minor
 seconds (semitones), while all
 the other seconds are major
 seconds (tones). In Fig. 10.5,
 the semitones are indicated by
 the letter s, while the tones are
 indicated by the letter t.

 In modern notations, the
 retiming algorithm in Fig. 10.5
 can be expressed as follows:

 It is interesting that the re
 sult of applying the (partly
 hypothetical) Old Babylonian
 retuning algorithms based on
 sequences of descending fifths

 isartu mode

 1(8)

 kitmu mode

 1(8)

 <\

 •T "5

 7ltd qabli mode

 1(8)

 -T V

 nis tuhri mode

 1 (8) .

 eintnibu mode

 1(8)
 <\

 pltu mode
 1(8)

 qablitu mode
 1 (8) L

 isartu mode (loosened)

 1 (8) L „

 Fig. 10.5. The retuning algorithm in UET VII 74+, § 3
 in terms of the 7/3 star diagram. (L = loosened.)
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 BEADGCF B CBAGFEDcb

 ^ J -J
 7s 5s 7s 5s 5s 7s 6s

 isartu, 5th

 t i t

 qablitu, augm. 4tli

 EADGCFBbE CBbAGFED ebb

 5s 7s 5s 5s 7s 5s 6s

 J S J b4
 t t i

 kitmu, 4th isartu, dim. 5th

 A D G C F Bb Eb A C Bb A G F Eb D c bb

 ^ i -J ^3=
 7s 5s 5s 7s 5s 7s 6s  t s t t t s t t

 embubu, 5th kitmu, augm. 4th

 D G C F Bb Eb Ab D C Bb Ab G F Eb D c bb

 i i 1 1 " 1 U 1 1 J J j = Jtj
 5s 5s 7s 5s 7s 5s 6s

 pllu, 4th  embubu, dim. 5th

 G C F Bb Eb Ab Db G C Bb Ab G F Eb Db c bb

 1>J bi  ^ ^ J g
 5s 7s 5s 7s 5s 7s 6s  t t t

 -b J b J_
 J II J

 7s 5s 7s 5s 7s 5s 6

 nisgabari, 5 th

 t t t

 fcJ ^ J b-J
 t t s t

 nitf qabli, augm. 4tli

 F Bb Eb Ab Db Gb Cb F Cb Bb Ab Gb F Eb Db cb bb

 bJ b^
 b J ,11

 >>J bi b-J b^
 5s 7s 5s 7s 5s 5s 6

 qablitu, 4 th

 t t s t t t s

 nis gabari, dim. 5th

 Bb Eb Ab Db Gb Cb Fb Bb Cb Bb Ab Gb Fb Eb Db cb bb

 bJ l,J u
 St

 7s 5s 7s 5s 5s 7s 6

 isartu, 5th

 t t t

 bJ bi u b»r
 t t s

 isartu

 mode

 kitmu

 mode

 mode

 pitu
 mode

 mode

 md qabli, 4th pitu, augm 4th

 C F Bb Eb Ab Db Gb C C Bb Ab Gb F Eb Db c bb

 mode

 qablitu
 mode

 isartu

 qablitu, augm. 4th

 t = tone, s = semitone

 Fig. 10.6. A modern (anachronistic) interpretation of
 the OB retuning algorithm in UET VII 74+, § 3.

 and ascending fourths, as illustrated by the 7/3 star
 figure in Fig. 10.4, will automatically lead to what in
 modern terminology may be called 7 different de
 scending diatonic heptatonic modes.

 Note that all the modes in Fig. 10.5 can be obtained
 also without the use of the modal retuning algorithm,
 namely as follows: First the initial tuning algorithm is
 used in order to obtain the isartu mode. Then the

 initial tuning algorithm
 is used a second time in

 order to obtain the cho

 sen mode. The pitu
 mode, for instance, can
 be obtained with depar
 ture from string 7, tun
 ing string 4 so that the
 pitu dichord becomes
 clear, then tuning string
 1 so that the nid qabli
 dichord becomes clear,
 and so on. The way to
 proceed is shown clearly
 by the 7/3 star diagram
 in Fig. 10.4.

 Now, consider instead
 the meaning of the pre
 served end of the first
 modal retiming algo
 rithm, the one of UET
 VII 74+, § 2, which can
 be explained vaguely as
 follows:

 § 2.5. If the string instru
 ment is tuned to the pitu
 mode, and the embühu
 dichord is dissonant

 ('unclear'), tighten the
 third string. The embühu
 dichord becomes conso

 nant ('clear').
 § 2.6. If the string instru

 ment is tuned to the

 embühu mode, and the
 kitmu dichord is disso

 nant, tighten the fourth
 rear (= the sixth) string.
 The kitmu dichord be

 comes consonant.

 § 2.7. If the string instru
 ment is tuned to the

 kitmu mode, and the
 isartu dichord is disso

 nant, tighten the
 samussu (= second) and
 the rear (= ninth) string.
 The isartu dichord be

 comes consonant.

 Tuning by tightening.

 This first modal retuning algorithm, too, can be
 explained in terms of the 7/3 star diagram, as in Fig.
 10.7 below.

 All the modes in Fig. 10.7 can be obtained as
 follows, without the use of the modal retuning algo
 rithm: first the initial tuning algorithm is used in order
 to obtain the isartu mode. Then the initial tuning
 algorithm is used a second time in order to obtain the
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 isartu mode

 1 (8)

 <\

 qablltu mode
 1 (8)

 embubu mode

 1 (8) T
 pilu mode

 1 (8) T

 nis tuhri mode

 1 (8) T

 nld qabli mode
 1 (8) T

 <\

 kitmu mode

 1 (8) T

 isartu mode (tightened)

 1 (8) T
 - X I / \ » X'J-J

 Fig. 10.7. The retuning algorithm in UET VII 74+, §2,
 in terms of the 7/3 star diagram. (T = tightened.)

 chosen mode. The kitmu mode, for instance, can be
 obtained with departure from string 6, by first tighten
 ing string 6, then tuning string 3 so that the kitmu
 dichord becomes clear, tuning string 7 so that the
 embübu dichord becomes clear, and so on. The way to
 proceed is again shown clearly by the 7/3 star diagram
 in Fig. 10.4.

 In modern notations, the retuning algorithm of
 UET VII 74+, § 2 can be expressed as:

 The ordering of the dichords in the order of the
 sides of the 7/3 star figure, beginning with the isartu
 dichord, seems to have been the prevailing standard.
 At least, this is what is suggested by the Assur text
 (VAT 10101) a long catalog of vocal and instrumental
 music, where in particular (see Kilmer, Festschrift
 Landsberger, 267) a list of love songs is summarized
 in the following way (11. 45-52):
 23 irätu sa e-sir-te akkadik' 23 love songs in the isartu

 mode, Akkadian
 17 irätu sa ki-it-me 17 love songs in the kitmu

 mode

 24 irätu sa eb-bu-be 24 love songs in the embübu
 mode

 4 irätu sa pi-i-te 4 love songs in the pitu mode

 [...] irätu sa ni-id murub4 [...] love songs in the nid
 qabli mode

 [...] irätu sa ni-is tuh-ri [...] love songs in the nis
 tuhri mode

 [...] irätu sa murub4-te [...] love songs in the qablitu
 mode

 [...] akkad?" [Total ... love songs], Akka
 dian

 The same ordering of the dichords can be observed
 in column ii of the table on CBS 1766 (see Fig. 6.1
 above).

 CBS 1766. A Clue to the Prov

 enance and the Date of the Clay
 Tablet

 It seems to be clear now

 that CBS 1766 is a text with a

 mixed topic. On one hand, there
 is the geometric topic of three
 kinds of 7-sided figures, both
 the 7/3 star figure which is
 explicitly depicted, the '7-side'
 (regular heptagon) whose sides
 are parallel to the sides of the
 7/3 star figure, and the 7/2 star

 figure whose sides are also par
 allel with the sides of the 7

 side. Indeed, according to the
 interpretation suggested in Fig.
 6.2 above, the text of the par
 tially preserved headings above

 columns ii-iv seems to refer to two of these three kinds

 of 7-sided figures. Regrettably, the text of the corre
 sponding heading above columns v-vi is not preserved.

 On the other hand, CBS 1766 also concerns the
 topic of Old Babylonian music theory, made obvious
 through the labelling of the seven points of the star
 figure by the names of seven strings of the sammü, and
 through the listing in column ii of the seven dichords
 in the order of the sides of the 7/3 star figure.

 In this connection, it is potentially important that
 traces are preserved also of the inscription in column
 xi, the last column of the table on CBS 1766, close to
 the right edge.3 The heading over that column appears
 to be mu.[bi.im] 'its name,' while traces of the inscrip
 tions in lines 1 and 2 of the same column can be read

 as i-[sar-tum] and k[i-it-mu-um\, the names of the
 dichords in lines 1-2 of col. ii.

 If the suggested readings of the preserved traces of
 inscriptions in the last column on CBS 1766 are
 correct, that means that the table on CBS 1766 in a
 certain sense is a close parallel to the table on the
 famous Old Babylonian mathematical table text
 Plimpton 322 (Friberg, MSCT 1, App. 8). This obser
 vation, in its turn, is important because it means that
 conclusions can be drawn about both the date and the

 provenance of CBS 1766.
 Indeed, on p. 33 of an interesting paper about

 "tables and tabular formatting" in cuneiform texts (in
 Campbell-Kelly et al., The History of Mathematical
 Tables), Robson writes that

 "... there is only one known mathematical cuneiform
 tablet which is conspicuously indebted to administra
 tive practise. Plimpton 322 has achieved such an
 iconic status as the Mesopotamian mathematical tab
 let par excellence that it comes as quite a shock to

 3) Collated by G. Frame, personal communication.
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 isartu, 5 th qablltu, augm. 4 th

 F# B E A D G C F# C BAG F# ED c b

 Ei
 P

 =-Je

 ^ -i J
 5s 7s 5s 7s 5s 5s 6s  t t t

 qablltu, 4th  mi gabari, dim. 5th

 isartu

 mode

 qablltu
 mode

 E# A# D# G# C# F# B E# C# B A# G# F# E# D# c# b

 4 jfJ HJ j)! »J tJ P J II ^ 1 *J II-1 P jfJ ^ ^ j
 5s 7s 5s 5s 7s 5s 6s  t t t

 kitmu, 4th  isartu, dim. 5th

 kitmu

 mode
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 ^■ViiVii'11!' J »j|r'<J-''J.iiNivflpp
 7s 5s 7s 5s 5s 7s 6s s t t t s t t s (tightene

 isartu, 5th qablltu, augm. 4th

 Fig. 10. 8. A modern (anachronistic) interpretation of
 the OB retuning algorithm in UET VII 74+, § 2.

 realize how odd it is. Its fame derives from its mathe

 matical content: fifteen rows of four extant columns

 containing sophisticated data relating to Pythagoras'
 theorem. The fact that this data is laid out in a

 landscape-oriented headed table, with a final heading
 MU.BI.IM ('its name') for the non-numerical data,
 has gone completely unremarked. These, of course,
 are formal features of administrative tables from Larsa

 during the period of rigorous standardization in the
 1790-80s BCE."

 Just like on Plimpton 322, the data on CBS 1766
 are laid out in a landscape-oriented table with head
 ings, in particular with a final heading mu.bi.im for
 the non-numerical data. Therefore, the conclusion must
 be that CBS 1766, like Plimpton 322, in all probability
 is an Old Babylonian text from Larsa, dating to the
 period 1790-1780 BC.

 UET VII 74+ in the Context of Old Babylonian "Ra
 tional Practice Texts"

 In a section of Ritter's interesting paper in Chemla,
 History of Science, 177-200, a typical Old Babylonian
 mathematical text is considered in the context of what

 is called there "rational practice texts." Ritter exam
 ines the grammatical structure of the text, and specifi
 cally the verbal chains. What he finds is that in this

 (and most other) Old
 Babylonian mathemati
 cal texts, the verbs in
 the statement of the

 problem are in the pret
 erite (roughly corre
 sponding to the English
 past tense), while the
 verbs in the solution

 procedure are in the
 durative (roughly corre
 sponding to the English
 future tense), or in the
 imperative.

 Ritter further states

 that this kind of rigidity
 of syntax can be ob
 served in only three
 other genres of Old Bab
 ylonian texts, those of
 divination, medicine,
 and jurisprudence. In
 one kind of divination

 text, for instance, the
 form that oil takes when
 poured on water is de
 scribed with verbs in

 either the preterite or the

 Stative (describing a
 constant state), while the

 corresponding prediction is expressed with verbs in
 the durative or the stative. In a cited example, the text
 says

 If, from the middle of the oil, two drops came out and one
 was large and the other small,

 the man's wife will give birth to a boy; for the sick man: he
 will recover.

 In the case of medical procedure texts, the presen
 tation of the medical problem is expressed with verbs
 in the preterite or the stative, while the medical solu
 tion to the problem is expressed with verbs in the
 durative. In a cited example, the text says
 If a man was stung by a scorpion,
 you will apply 'ox excrement' and he will recover.

 In juridical procedure texts, finally, the presenta
 tion of the case is expressed in terms of verbs in the
 preterite, followed by a verb in the perfect (English
 present perfect), while in the solution to the case the
 verbs are in the durative. In a cited example, the text
 says

 If a man accused a(nother) man and charged murder (against
 him), but he was not convicted,

 his accuser will be killed.

 Note that a conspicuous (and typical) common
 feature of the three cited examples is that they all start
 with the word 'if (Akk. summa). Old Babylonian
 mathematical texts, on the other hand, rarely start this

This content downloaded from 128.122.149.154 on Thu, 18 May 2017 16:57:27 UTC
All use subject to http://about.jstor.org/terms



 140 Jöran Friberg

 way, although they do in a few instances, such as the
 geometric algorithm text VAT 8393 (Friberg, Amazing
 Traces, 434), and the Eshnunna texts IM 52301
 (Heyrup, Lengths, Widths, Surfaces, 213) and IM 67118
 (= Db2-146) {ibid., 257).

 This conspicuous feature is shared also by each
 paragraph in the retuning algorithm text UET VII 74+,
 §§ 2-3. Moreover, in each one of those paragraphs, the
 statement of the problem with the given tuning of the
 sammü instrument is expressed with verbs in the Stative,
 while the solution to the problem is expressed in terms
 of verbs in the durative. Therefore, it appears that the
 retuning algorithm text UET VII 74+, §§ 2-3 belongs
 to the same category of "rational practice texts" as
 Old Babylonian mathematical procedure texts, divina
 tion texts, medical procedure texts, and juridical pro
 cedure texts!

 11. CBS 10996. A Neo-Babylonian{?) Table of
 Constants

 Photos of obverse and reverse of CBS 10996, a
 large fragment of a Neo-Babylonian(?) table of con
 stants, were published by Kilmer in Or 29, together
 with a translation of the text and a commentary. The
 new copies of the text in Figs. 11.1 and 11.4 were
 kindly made for the author by F. Al-Rawi.

 The text on one side of the fragment is almost
 perfectly preserved, while very little remains of the
 text on the other side. Although the imperfect state of
 preservation of the clay tablet makes it difficult to be
 absolutely sure, apparently the well preserved side of
 the tablet is the reverse.4

 Only 15 lines of the first column on the obverse are
 partially preserved, but the appearance of, for instance,
 the terms sag 'front, short side,' us 'length, long side,'
 dal 'transversal,' and gür 'curve, circle' in this brief
 list makes it obvious that this is what remains of a

 table of constants with parameters for simple plane
 geometric figures. In particular, the lines (i 9'-11')

 5 gür 5 (for the) circle
 1 bal [gür] 1 (for the) ratio [of a circle]

 20! dal [gür] 20 (for the) transversal [of a circle]
 refer to the following well known Babylonian rules for
 the area A and diameter d of a circle:

 A = 5 (• 1/60) = 1/12 for a circle with a circumference
 of unit length

 d — 20 (• 1/60) = 1/3 for a circle with a circumference
 of unit length.

 More specifically, this means that (approximately)
 A — 5 (■ 1/60) ■ square of a for a circle with the cir

 cumference a

 d = 20 (■ 1/60) =1/3 a for a circle with the cir
 cumference a.

 The mention of the 'ratio' 1 is without known prece
 dent. Presumably, it refers to the ratio a! 1 which, of
 course, is equal to 1 in a circle with a circumference
 of unit length.

 As shown in Figs. 11.2-4 below, the text on the
 reverse of CBS 10996 contains fairly well preserved
 parts of three columns of text, presumably columns iv
 vi. The general layout of the text is shown in the
 outline of the fragment below.

 The table of constants on CBS 10996 has a very
 inhomogeneous, mixed content, just like a number of
 other known Old Babylonian tables of constants (see
 Friberg, in Changing Views, 64-67; Robson, Mesopo
 tamian Mathematics, xiii, 193-207). The explanation
 is probably that there existed no "canonical" table of
 constants. Instead, tables of constants may typically
 have been produced by teachers of mathematics who
 sporadically made notes, for future use in the class
 room, of numerical data that they found in mathemati
 cal (and other) texts that happened to be available to
 them. Furthermore, entries in Babylonian tables of
 constants are usually so brief that it is impossible to
 understand what they refer to, except in the lucky
 cases when texts are known where the constants ap
 pear in a comprehensible context.

 Thus, for instance, the first preserved section in
 col. iv on the reverse of CBS 10996 contains a list of

 constants in some way related to heaps of se.gis.i
 'sesame.' Since no text, or at least
 no mathematical text, is known
 where such constants appear in a
 natural way, there is no obvious
 explanation for these sesame con
 stants.5

 Fig. 11.1. CBS 10996, obv. Conform transliteration and copy. Copy: F. Al-Rawi.

 4) Collated by G. Frame, personal
 communication.

 3) Some Neo-Assyrian tablets from
 an archive in the South Palace of

 Nebuchadnezzar II in Babylon contain
 accounts mentioning both sesame and
 sesame oil, with an exchange rate of 1
 unit of oil for 6 or 7 units of sesame

 (O. Pedersen, Studia Orientalia 106,
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 i obv.  vi

 c. 38 lines

 dichord numbers

 string names and
 dichord numbers

 v  iv  rev.

 c. 38 lines  c. 38 lines

 Fig. 11.2. CBS 10996. An outline of the fragment, with
 an indication of the general layout of the text.

 The second section

 in col. iv, on the other
 hand, contains constants
 well known from astro

 nomical texts, such as
 the astronomical and as

 trological compendium
 Enüma Anu Ellil (see
 Friberg et al., BaM 21,
 496-499 and Robson,
 Mesopotamian Math
 ematics, Sec. 8.2). In
 particular, mü and sü
 sa d30 mean the 'first

 rising' and the 'first set
 ting' of the moon ('the
 god 30'), igi.dug.a
 means 'visibility' (of
 the moon), while u^-mu
 and ge6 mean 'day' and
 'night.'

 Sub. murubd
 gis. sub.ba
 murub4- luj

 ~Tl &■ 5u. kin
 Ta gi.nig.sa. ba
 Ta gi.nig.sa.ba r i
 T5 /}/- im- ma- ti

 uj-mu a-na gc^ na- pg. fa
 Sefs a-na u4-mu na-pa- lu

 a.mc§
 a.me§

 K8 a.Sa a.meS sa
 2 4*6 4* a. Sa a.me§ sa

 r-a- mu gun giS mar.

 za-ba-lu 6.

 1*2 3* za-ba-lu 1,

 ] 13 4* 5 za-ba-lu 2 4*6 4* x
 J ix 3 za-ba-lu lu_ barig

 Fig. 11.3. CBS 10996. A Neo-Babylonian table of constants of mixed content. Conform transliteration.

 198. The constants for sesame mentioned in CBS 10996 are

 of a different nature. See also Bongenaar, Ebabbar, with a
 discussion of the oil pressers on pp. 261-287. Various rates
 are mentioned in fn. 241 on p. 266.
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 Fig. 11.4. CBS 10996. A Neo-Babylonian table of constants of mixed content. Copy F. Al-Rawi.

 The third section in col. iv, is concerned with
 constants for gis.nu.ür.ma 'pomegranates.' In this case,
 too, the term does not appear in any known mathe
 matical texts, so the meaning of the constants remains
 unknown.

 The fourth section is concerned with constants for

 irrigation (a.mes means 'water'). Several of these con
 stants are known from Old Babylonian mathematical
 texts (see Robson, Mesopotamian Mathematics, Sec.
 6.5).

 The fifth and final section in col. iv contains con

 stants in some way associated with problems concern
 ing transportation of commodities measured in capaci
 ty measure. In particular, gun gis.mar.gid.da means
 'load of a wagon,' and zabälu means 'to carry.'

 In col. v, the first preserved section mentions con
 stants called gis.mä.lä 'cargo-boat,' meaning either
 "molding numbers" or "loading numbers," for four
 kinds of bricks, namely sig4 (ordinary rectangular
 bricks, measuring 1/2 cubit x 1/3 cubit x 5 fingers),
 sig4.ab (half-bricks, 2/3 cubit x 1/3 cubit x 5 fingers),
 signal.ür.ra (square bricks, 2/3 cubit x 2/3 cubit x 5
 fingers), or sig4.2/3-ti (larger rectangular bricks, 18
 fingers x 12 fingers x 5 fingers). Such constants are
 well known from various Old Babylonian problem
 texts and tables of constants (see Friberg, in Changing
 Views, Sec. 4.1; MSCT 1, Sec. 7.3).

 The second section in col. v is structured in a

 similar way, with constants called gis.mä.lä, only this
 time not for bricks but for reeds and reed bundles. The

 exact meaning of these reed constants is not known.
 On CBS 10996, the table of constants in the proper

 sense ends with the section of reed constants. What

 then follows, in the lower part of col. v, is not a table
 of constants but a seemingly peculiar enumeration of
 sexagesimal numbers and capacity measures, making
 no real sense in a table of constants. It is rather in

 several ways similar to the table of parameters for a
 series of mathematical problems concerned with meas
 uring vessels in the Old Babylonian theme text YBC
 4669. (See Friberg, MSCT 1, Sec. 4.7, in particular
 Fig. 4.7.) It is likely, therefore (see the clarifying
 discussion in Friberg, BaM 28, 309) that the numbers
 and capacity measures tabulated in the lower part of
 col. v on CBS 10996 are the data for two series of

 exercises much like the ones in YBC 4669, one series
 for box-like measuring vessels, and a second series for
 cylindrical measuring vessels.

 In view of the proposed explanation of mathemati
 cal tables of constants as a mathematics teachers'

 work notes for future use in the class room, there is
 nothing strange in the inclusion in this text of data for
 a couple of series of mathematical exercises.

 Similarly, there is nothing strange in the inclusion
 of the table of names for fourteen dichords in the

 upper part of col. vi of CBS 10996, actually at the
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 very end of the text, after the author of the text had run
 out of mathematical constants that he wanted to make

 notes of. Also, it is not strange that when he saw that
 there was still some space available in the lower part
 of col. v, he decided to be more explicit, calling by
 name not only the fourteen dichords but also the seven
 strings in terms of which the dichords were defined.

 It is more surprising that the primary series of
 dichords is not recorded in the same order as the sides

 of the 7/3 star figure (2, 6; 6, 3; etc.\ see Fig. 10.4),
 but rather in lexicographic order (1, 5; 2, 6; etc.). The
 reason may be that the author of the text did not really
 understand the tuning procedure based on the sequence
 2, 6; 6, 3; etc.

 The order of the secondary series of dichords (7, 5;
 1, 6; etc.) seems to be coupled (in a somewhat unor
 ganized way) to the order of the primary series of
 dichords. The purpose of this secondary series of
 dichords is not well understood. It has been proposed,
 in Smith and Kilmer, SMA I, that the secondary series
 of dichords was used for "fine tuning," but according
 to Dumbrill (Archaeomusicology) the proposal is unre
 alistic. So, maybe, this secondary series was contrived,
 in a purely theoretical way, as an attempt to give a
 musical meaning to the dichords corresponding to the
 sides of a 7/2 star figure, as suggested by the (incom
 plete) evidence of CBS 1766 (Fig. 10.2).

 It is remarkable that Babylonian music theory seems
 to have been closely connected with Babylonian mathe
 matics. This is shown not only by CBS 10996, where
 the names of the 14 dichords are recorded in a mathe

 matical table of constants, but also by CBS 1766,
 where three kinds of 7-pointed star figures (a regular
 heptagon, a 7/2 star figure, and a 7/3 star figure)
 apparently are considered both as geometric objects
 and as a visualization of the 14 dichords. Last, but not
 least, the retuning algorithm in UET VII 74+, col. ii is
 both in form and in context very much reminiscent of
 a mathematical recursive algorithm. (Cfi, for instance,
 the ascending and descending geometric recursive al
 gorithms in VAT 8393, Friberg, Amazing Traces, App.
 1, used for the construction of a chain of trapezoids
 with fixed diagonals.)
 Note: There seem to have been about 38 lines in each

 column on the reverse of CBS 10996, and it is war
 ranted to assume that also the three (or four?) columns
 on the destroyed obverse contained about 38 lines
 each. Since the table of constants in the proper sense
 ends in the middle of column v, a reasonable estimate
 is that CBS 10996 originally mentioned, at least,
 something like 4 • 38 + 14 = 166 constants. This
 makes CBS 10996 (in its original, intact form) by far
 the most extensive of all known Babylonian tables of
 mathematical or technical constants. (Compare with,
 for instance, TMS 3 with 70 entries and YBC 5022,
 Neugebauer und Sachs, MCT text Ud, with 66 entries.

 The badly preserved text G = IM 49949, admittedly
 contains a large number of entries, but most of those
 entries list mathematical problem types, not constants.)
 Against this background, it is most unfortunate that so
 much of the obverse of CBS 10996 is lost, but so
 much more fortunate that column vi with its musical

 terms is so well preserved!

 12. On Greek "Pythagorean" Music Theory and
 Ratios of String Lengths

 It would be extremely difficult to try to give a brief
 and comprehensible account of ancient Greek music
 theory in general, for a number of reasons. The ac
 count below will be concentrated to a narrow and

 limited discussion of only sources for what is known
 about Greek music theory in the particular cases when
 it is concerned with diatonic heptatonic scales of the
 Babylonian type, mainly expressed in terms of ratios
 of string lengths.

 Pythagoras as the Alleged Discoverer of Epimoric
 String Ratios

 The discovery that musical consonance is directly
 related to numerically simple ratios of string lengths
 was attributed to Pythagoras himself by his followers,
 the so called Pythagoreans. How the discovery alleg
 edly was made is described in a well known, but
 certainly both historically and physically incorrect
 anecdote, which begins as follows:

 Nicomachus, Enchiridion, Ch. 6 (the beginning of
 the 2nd century BC; Barker, GMW II, 256-258)
 "... Happening by some heaven-sent chance to walk
 by a black-smith's workshop, he (Pythagoras) heard
 the hammers beating iron on the anvil and giving out
 sounds fully concordant in combination with one an
 other ... and he recognized among them the conso
 nance of the octave and those of the fifth and the

 fourth. He noticed that what lay in between the fourth
 and the fifth was itself discordant, but was essential in
 filling out the greater of these intervals ..."

 Pythagorean String Ratios in Plato's Timaeus

 One of the oldest known references to ratios of

 string lengths is contained (implicitly) in a famous
 passage in Plato's dialogue Timaeus, which describes
 how the divine 'Craftsman' began his creation of the
 Soul of the Universe by dividing a mixture of the
 Same, the Different, and the Being into a number of
 components in the following way:

 Plato, Timaeus [35b-36b] (the first half of the 4th
 century BC; Barker, GMW II, 59-60)
 "... This is how he began to divide. First he took away
 one part from the whole; then another, double the size
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 of the first, then a third, hemiolic with respect to the
 second and triple the first, then a fourth, double the
 second, then a fifth, three times the third, then a sixth,
 eight times the first, then a seventh, twenty-seven
 times the first."

 "Next he filled out the double and triple intervals,
 once again cutting off parts from the material and
 placing them in the intervening gaps, so that in each
 interval there were two means, the one exceeding and
 exceeded by the same part of the extremes them
 selves, the other exceeding and exceeded by an equal
 number. From these links within the previous inter
 vals there arose hemiolic, epitritic and epogdoic inter
 vals; and he filled up all the epitritics with the epogdoic
 kind of interval, leaving a part of each of them, where
 the interval of the remaining part had as its bounda
 ries, number to number, 256 to 243. And in this way
 he had now used up all the mixture from which he cut
 these portions."
 Strange terms in this passage, borrowed from Py

 thagorean music theory, are 'hemiolic,' from Greek
 hemiolios ('a half and a whole,' meaning 1 1/2),
 'epitritic,' from Greek epitritos ('a third more,' mean
 ing 1 1/3), and 'epogdoic,' from Greek epögdoos ('an
 eighth more,' meaning 1 1/8). These three expressions
 are all 'epimoric,' from Greek epimörios ('a part
 more,' meaning 1 1 In, for some small integer n).
 Incidentally, such expressions are not unusual in Old
 Babylonian mathematical texts, where they typically
 occur as coefficients in quadratic equations. See, for
 instance, § 5 of the Old Babylonian mathematical
 catalog text BM 80209 (Friberg, Amazing Traces, 29).

 Note that commonly used translations of the kind
 {n + 1 )/n for 'epimoric,' and 3/2, 4/3, 9/8 for 'hemiolic,'
 'epitritic,' 'epogdoic,' are somewhat anachronistic.
 Indeed, the earliest documented use of common frac
 tions occurs (implicitly) in the Egyptian demotic mathe
 matical papyrus P.BM 10520 § 5 (early(?) Roman).
 (See Friberg Unexpected Links, 150-155.) Thus, when
 Plato awkwardly writes "the remaining part had as its
 boundaries, number to number, 256 to 243," that is
 precisely because he can only express as a ratio (less
 anachronistically, 256 : 243) what we would write sim
 ply as the common fraction 256/243.

 In the first of the cited paragraphs from the Timaeus,
 Plato divides the divine mixture into parts of the
 relative sizes

 a, 2 a, 1 1/2 ■ 2a, 2 • 2a, 3 • (1 1/2-2 a), 8 a, 27 a.

 These relative sizes can also be expressed as
 1 a, 2 a, 3 a, 4 a, 9 a, 8 a, 27 a,

 where 4 and 9, 8 and 27 are the squares and cubes,
 respectively, of 2 and 3.

 In the second of the cited paragraphs, Plato sug
 gests that epimorics can be inserted between the pow
 ers of 2 and 3 ("the double and triple intervals") by use
 of two kinds of means, namely what we would call the
 harmonic and arithmetic means. The idea is that one

 mean between two given numbers (integers) p and q
 can be computed as follows:

 if p + r ■ p = q - r ■ q for some part r, then p - q = r ■
 (p + q), and so on.

 The other kind of mean between two numbers p and q
 can be computed as follows:

 if p + n = q - n for some number n, then p - q = 2 n, and
 so on.

 In Nicomachus' Enchiridion or 'Handbook' of har

 monics (2nd century AD), Ch. 8 (Barker, GMW II,
 259), the following example is used to clarify the
 situation:

 "... A duple interval is that of 12 to 6; and it has two
 means, the numbers 9 and 8. Now the number 8 is a
 mean in harmonic proportion between 6 and 12, ex
 ceeding 6 by one third of that 6, and exceeded by 12
 by one third of that 12. ... The other mean, which is
 9, and which is so placed as to correspond to parame.se,
 is reckoned to stand as an arithmetical mean in rela

 tion to the extremes, exceeding 6 by the same number,
 3, as that by which it is exceeded by 12. ..."

 The example is well chosen, because it is easy to see
 that

 12 = 2 • 6, 8 = 1 1/3 ■ 6, 9 = 1 1/2 ■ 6, 9 = 1 1/8-8,
 12 = 11/2- 8, and 12 = 11/3- 9.

 Every one of these relations is intimately connected
 with Pythagorean music theory.

 The Euclidean Division of the Canon

 Also the meaning of the remainder of the cited
 paragraphs from the Timaeus will become clear after
 the continued discussion below of important examples
 of Pythagorean music theory, beginning with selected
 propositions from the little treatise Sectio Canonis
 'Division of the Canon', which is attributed to Euclid
 in several of the known sources.

 The Euclidean Sectio Canonis ('Division of the
 Canon') (Barker, GMW II, 190-208)
 Prop. 6. The duple interval is composed of the two
 greatest epimoric intervals, the hemiolic and the
 epitritic.

 Two proofs of this proposition are given. The
 second, simpler proof argues as follows: If A is the
 hemiolic of B and B the epitritic of C, then A contains
 B and half of B. Therefore two A's are equal to three
 B's. Also B contains C and a third of C, so that three
 B's are equal to four C's. Therefore, two A's are equal
 to four C's, so that A is equal to two C's. Hence A is
 double G.6

 Prop. 8. If an epitritic interval is subtracted from a
 hemiolic interval, the remainder is epogdoic.

 In the proof, it is assumed that A is the hemiolic of
 B and C the epitritic of B. Then A contains B and half

 f') Anachronistically, in terms of common fractions: if A
 = 3/2 B and B = 4/3 C, then A = 3/2 • 4/3 C = 2 C.
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 of B, so that eight A's are equal to twelve B's. Again,
 C contains B and a third of B so that nine G's are

 equal to twelve B's. Consequently, eight A's are equal
 to nine C's. Therefore A is equal to C and an eighth
 of C. Hence A is the epogdoic of C.7

 Prop. 9. Six epogdoic intervals are greater than one
 duple interval.

 In the proof, it is assumed that A is a number, that
 B is the epogdoic of A, C of B, D of G, E of D, F of
 E, and G of F, so that A, B, C, D, E, F, G are
 epogdoics of one another (a geometric progression).
 Then, in the least terms (see Euclid's Elements VIII
 2),

 A = 26 myriads 2,144 (the sixth power of 8),
 B = A + 1/8 A = 29 myriads 4,912,
 C = B + 1/8 B = 33 myriads 1,776,
 D = C + 1/8 C = 37 myriads 3,248,
 E = D+1/8D = 41 myriads 9,904,
 F = E + 1/8 E = 47 myriads 2,392,
 G = F + 1/8 F = 53 myriads 1,441 (the sixth power of 9).

 Hence G = 53 myriads 1,441 is more than two A's
 = 52 myriads 4,288.8

 Prop. 12. The octave interval is duple.

 In the proof, proceeding in a not quite satisfactory
 way from the axiomatic assumption that concordant
 intervals correspond to string ratios that are either
 multiple or epimoric, it is observed, among other
 things, that the octave is made up of the hemiolic and
 the epitritic, the two largest epimoric
 intervals. It is also made up of the fifth
 and the fourth, and these are both
 epimoric (Prop. 11). Therefore, the fifth
 is hemiolic, the fourth is epitritic, and
 the octave is duple.

 Prop. 13. It remains to show that the
 interval of a tone is epogdoic.
 Indeed, if an epitritic interval is

 subtracted from a hemiolic interval, the
 remainder is epogdoic, and if a fourth
 is taken from a fifth, the remainder is
 (by definition) a tone. But the fifth is
 hemiolic and the fourth is epitritic.
 Therefore, the interval of a tone is
 epogdoic.

 Prop. 14. The octave is less than six
 tones.

 This follows from Prop. 9.
 Prop. 15. The fourth is less than two
 and a half tones, and the fifth is less
 than three and a half tones.

 This is because the octave, which is
 less than six tones is equal to two

 fourths and a tone, so that two fourths are less than
 five tones. And so on.

 Prop. 19. To mark out the canon according to the so
 called changeless system.

 In the 'changeless system' of Greek music theory, a
 central octave is thought of as composed of two
 'tetrachords' (four successive strings), separated by a
 tone. In Fig. 12.1 below, the two tetrachords of the
 central octave are called the 'middle' and the 'disjoined'
 tetrachord. To the central octave are joined on either
 side an 'extra' and an 'upper' tetrachord, and then an
 additional tone. The result is strings spanning a double
 octave.

 The 'canon' in Prop. 19 is a measuring stick (a
 "monochord") along which a string is stretched from
 A to B (see again Fig. 12.1, which, by the way, is
 more detailed than the corresponding diagrams in the
 original manuscripts). A moveable bridge can take any
 position from E to A, defining a corresponding string
 length with departure from B. The positions of the
 bridge producing notes corresponding to various parts
 of the 'changeless system' are determined algorithmi
 cally, in a sequence of steps, in the following way:

 1. The bass note is defined by the whole string AB. It is
 called proslambanömenos, the 'added-on,'

 2. AB is divided into four equal parts, at C, D, and E.
 Then AB is epitritic of AC, so that CB is a fourth
 above AB in pitch. It is called the 'upper diatonic.'

 added-on

 upper hypate

 (upper diatonic)

 middle hypate

 mese

 next to mese

 - conjoined nete

 disjoined nete

 extra nete

 L- O
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 l_  G
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 hypate 'top'(relative to the
 monochord, not in pitch)

 parhypate 'next to hypate'
 mese 'middle'

 paramese 'next to mese'
 nete 'bottom'(rel. to the monochord)

 <u
 >

 oo

 o

 >

 o
 . >

 ,5

 00

 k00

 <u

 00

 proslambanomenos 'added-on'
 hypatos 'upper' (rel. to the monochord)
 diatonos 'diatonic'

 mesos 'middle'

 diezeugmenos 'disjoined'
 synemmenos 'conjoined'
 hyperboldios 'extra'

 Fig. 12.1. Sectio Canonis, Prop. 19. Construction
 of the fixed notes (independent of genus).

 7) Anachronistically: if A = 3/2 B and C
 = 4/3 B, then B = 3/4 C and A = 3/2 ■ 3/4
 C = 9/8 C.

 8) A myriad is 100 times 100. Anachro
 nistically: G = (9/8)6 • A = 531,441/262,144
 A is more than 2 A.
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 3. AB is made duple DB. Then DB is an octave above
 AB. It is called mese, 'middle.'

 4. AB is quadruple EB. Then EB is two octaves above
 AB. It is called 'extra nete' (nete = 'bottom').

 5. CB is made duple FB. Then FB is an octave above
 CB. It is called 'conjoined nete.''

 6. DB is made hemiolic of GB. Then GB is a fifth above
 DB. It is called 'disjoined nete.''

 7. HB is made duple GB. Then HB is an octave below
 GB. It is called 'middle hypäte' (hypäte = 'top').

 8. HB is made hemiolic of KB. Then KB is a fifth above
 HB. It is called 'next to mese'.

 9. LB is made duple KB. Then LB is an octave below
 KB. It is called 'upper hypäte

 In this way, the string lengths corresponding to all the
 'fixed notes' of the 'changeless system' have been
 determined, and also the string length corresponding
 to one 'moveable note' (CB). The fixed notes bound
 five tetrachords and two tones of the double octave.

 Note that the procedure used is entirely mathematical.
 The author of Sectio Canonis did not bother to

 demonstrate that the construction really yielded the
 desired result. It is easy to supply the missing details,
 for instance as follows:

 10. DB is an octave below EB and a fifth below GB.

 Therefore, GB is a fourth below EB.
 11. GB is an octave above HB and a fifth above DB.

 Therefore, DB is a fourth above HB.
 12. HB is an octave below GB and a fifth below KB.

 Therefore, KB is a fourth below GB.
 13. HB is a fifth below KB and a

 fourth below DB. Therefore, DB
 is a tone below KB.

 14. KB is an octave above LB and a

 fifth above HB. Therefore, HB
 is a fourth above LB.

 15. AB is an octave below DB, LB
 is a fourth below HB, and HB is
 a fourth below DB.

 Therefore, AB is a tone below
 LB.

 Prop. 20. It remains to find the
 moveable notes.

 The 'moveable notes' are the

 notes defined by seven strings -within
 the four tetrachords. One of these

 has been found already, the 'upper
 diatonic.' The remaining moveable
 notes are determined algorithmical
 ly, as follows:

 1. MB is made epogdoic of EB.
 Then MB is a tone below EB. It

 is called 'extra diatonic.'

 2. NB is made epogdoic of MB.
 Then NB is a tone below MB. It

 is called 'extra trite'' (trite
 = 'third').

 3. XB is made epitritic of NB. Then
 XB is a fourth below NB. It is
 called 'disjoined trite.'

 4. OB is made hemiolic of XB. Then OB is a fifth below
 XB. It is called 'middle next to hypäte.'

 5. PO is made equal to OX. Then PB is duple XB, so
 that PB is an octave below XB.

 It is called 'upper next to hypäte.'
 6. CB is made epitritic of RB. Then RB is a fourth

 above CB. It is called 'middle diatonic.'

 The distribution of tones and 'semitones' in the double

 octave, the "Greater Perfect System," is not explicitly
 mentioned by the author of Sectio Canonis, but it is
 easily determined, for instance as follows:

 7. By construction, MB is a tone below EB, and NB a
 tone below MB.

 8. GB is a fourth below EB, at the same time as NB is
 two tones below EB. If the amount that GB is below

 NB is called a 'semitone,' then a fourth can be
 divided into two tones and a semitone, where, accord
 ing to Sectio Canonis, Prop. 15, a semitone is less
 than half a tone.

 In terms of string ratios, GB = 11/3- EB, and NB
 = 11/8 1 1/8 • EB. Consequently, 3 GB = 4 EB, and
 64 NB = 81 EB, so that 81 • 3 GB = 81 • 4 EB = 4
 • 64 NB. In other words, 243 GB = 256 NB, or
 GB : NB = 256 : 243. (Cf. the cited obscure passage
 from Plato's Timaeus.)

 9. XB is a fourth below NB, and KB is a fourth below
 GB. Therefore, KB is a semitone below XB.

 10. OB is a fifth below XB, and HB is a fifth below KB.
 Therefore, HB is a semitone below OB.

 11. PB is an octave below XB, and LB is an octave below
 KB. Therefore, LB is a semitone below PB.
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 Fig. 12.2. Sectio Canonis, Prop. 20. Construction of the moveable notes in the
 diatonic genus.

This content downloaded from 128.122.149.154 on Thu, 18 May 2017 16:57:27 UTC
All use subject to http://about.jstor.org/terms



 Seven-Sided Star Figures and Tuning Algorithms in Mesopotamian, Greek, and Islamic Texts 147

 12. AB is a fourth below CB, and a tone and a semitone
 below PB. Therefore, PB is a tone below CB.

 13. LB is a fourth below HB, and a tone and a semitone
 below CB. Therefore, CB is a tone below HB.

 14. CB is a fourth below RB, and HB a fourth below DB.
 Therefore, RB is a tone below DB. Then, OB is also
 a tone below RB.

 15. CB is an octave above FB, and four tones and two
 semitones below XB.

 Therefore, XB is a tone below FB. Then, FB is also
 a tone below GB.

 The distribution of tones and semitones is indicated in

 Fig. 12.2 above, which, by the way, is more detailed
 than the corresponding diagrams in the original manu
 scripts.9

 Ptolemy's Construction of the Seven tönoi (Octave
 Forms)

 The distribution of tones and semitones is explic
 itly mentioned in the following interesting passage in
 Ptolemy's Harmonics.

 Ptolemy, Harmonics, 11.10-11 (Egypt, 2nd century
 AD; Barker, GMW II, 336ff.)

 11.10 "... This (the production of modulations) can
 be done according to the proper method, if we begin
 by setting down a higher tonos, which we call A, then
 take first the one lower than it by a fourth, B, and next
 the one lower than B by a fourth, C, which will still
 be within the compass of an octave. Next, since the
 one lower than C by a fourth falls outside the octave,
 we take the one functionally equivalent to it, that is,
 the one higher than C by a fifth, D. Then, once again,
 we set down the one lower by a fourth than this one,
 E, and next, instead of the one lower than E by a
 fourth, since that too falls outside the octave, we
 make F the one higher than E by a fifth; and we set
 down once again the one lower than F by a fourth, G.
 ... It will unquestionably follow that the differences
 between C and E, between G and E, between B and
 D, and between D and F are constituted as tones,
 while those between G and B and F and A contain

 what is called the limma. ..."

 "Now A corresponds to Mixolydian, F to Lydian,
 D to Phrygian, B to Dorian, G to Hypolydian, E to
 Hypophrygian, and C
 to Hypodorian, so that
 the differences be

 tween them, which
 have been somehow or

 other handed down,
 have now been discov

 ered by reason."
 11.11 "It is clear

 that in these tonoi that

 we have set out there

 will be, peculiar to each of them, a specific note of
 the octave that belongs to dynamic mese, since the
 tonoi are equal in number to the species. For if we set
 out an octave in the intermediate range of the com
 plete systema, that is, the range from thetic middle
 hypate to disjoined nete (to allow the voice to move
 about and exercise itself comfortably upon melodies
 of middling compass, for the most part, going out
 infrequently to the extremes because of the hard work
 and force involved in slackening or tension that goes
 beyond the norm), the dynamic mese of the Mixolydian
 will be attuned to the position of the disjoined next to
 nete, so that the tonos may make the first species of
 the octave in the range set out; that of the Lydian will
 be attuned to the position of the disjoined trite, corre
 sponding to the second species; that of Phrygian to
 the position of the next to mese, corresponding to the
 third species; that of Dorian to the position of the
 mese, making the fourth and central species of the
 octave; that of Hypolydian to the position of the
 middle lichanos, corresponding to the fifth species;
 that of Hypophrygian to the position of the middle
 next to hypate, corresponding to the sixth species; and
 that of Hypodorian to the position of the middle
 hypate, corresponding to the seventh species. ..."
 In the cited passage, Ptolemy demonstrates a sim

 ple procedure by use of which seven modulations of
 an initial tonos can be produced, each one with its
 mese located within the central octave of the Greater
 Perfect System (GPS), the octave most suitable for the
 voice. He begins with a "higher" (actually, the high
 est) tönos A, then considers B a fourth "below" A, and
 C a fourth below B. Since three fourths extend over

 more than one octave, a fourth tönos cannot be pro
 duced by going down by another fourth. Instead, the
 next tonos, called D, is produced by moving C up by
 a fifth. Similarly, the fifth, sixth, and seventh tönoi,
 called E, F, and G are produced by going down a
 fourth, up a fifth, and finally down again by a fourth.
 See Fig. 12.3 below.

 Reordering the seven octave species from the "high
 est" to the "lowest," Ptolemy points out that C is now
 a tone below E, and that similarly the differences
 between E and G, between B and D, and between D

 5th

 5th

 as
 _JL

 O  W  u

 4th  4th

 4th

 4th

 Fig. 12.3. Harmonics 11.10. Six modulations of a higher tonus.

 1. EC = DC - BC = 5th - 4th = tone

 2. GE = FE - DE = 5th - 4th = tone

 3. BG = BC - GC = 4th - ditone = limma

 4. BC = DE = FG = AB

 DB = EC = tone, FD = GE = tone,

 AF = BG = limma

 ,J) This disposition of tones and semitones (and their
 counterparts in other genera) is absolutely normal in Greek
 accounts, in Aristoxenus and his followers as well as in
 exponents of mathematical harmonics such as Plato, Thra

 syllus, Nichomachus, Ptolemy, etc. (A. Barker, personal
 communication.) 1 want to use this opportunity to thank A.
 Barker for gently guiding me through some of the intricacies
 of Greek music theory.

This content downloaded from 128.122.149.154 on Thu, 18 May 2017 16:57:27 UTC
All use subject to http://about.jstor.org/terms



 148 Jöran Friberg

 d n

 d 11 n

 d t

 n m

 m

 ml

 m n h

 m h

 u n h
 u h

 c

 .2

 o
 X

 §

 e t

 d n

 d n n

 d t

 n in

 ml

 m n h

 m h

 -o

 J

 u I -

 tin h
 u h

 en/ a-o

 enn

 e t

 d n

 d n n -|

 dr

 n m

 m

 m I

 en/ a-o -

 mil h
 m h

 u / -J

 e t

 d n

 en n

 e t

 unii
 u h

 en n

 e t

 An

 dnn

 d t

 n m

 - en/ a-o

 s

 '3d
 £?

 JS
 n.

 m / -

 mn/i

 m It

 u /

 tin h
 u h

 en / a-o

 u h

 en/ a-o

 en n

 e t

 An

 Ann

 .1 d t
 I*
 o n tit
 —

 C5

 u n h
 u h

 en! a-o

 e /

 d n

 dn;i -

 B

 .2
 •3

 a

 a

 ml -|

 mn/i

 m h

 u I

 u n h
 u h

 u I -

 u n h -
 ah -

 en! a-o

 d t

 n m

 m

 m I

 m n h

 m h

 u /

 u n h

 M
 >>

 JS
 Q*
 O
 Cm

 W

 e t

 d n

 dnn

 d t

 n m

 m

 ml -

 mnh -

 m h -

 u I -

 boldface: fixed notes / = lichanos 'forefinger' n n  = next to nete

 Fig. 12.4. Ptolemy's Harmonics, 11.10-11. The seven tonoi
 explained in terms of the Greater Perfect System.

 and F, all are a tone, while G is a limma 'remainder'
 (a semitone) below B, and F a limma below A.

 Ptolemy then concludes that A, F, D, B, G, E, C
 are related to the seven Greek octave-forms Mixolydian,
 Lydian, Phrygian, Dorian, Hypolydian (a fourth below
 Lydian), Hypophrygian (a fourth below Phrygian), and
 Hypodorian (a fourth below Dorian).

 Finally, he considers the mese of each one of the
 seven tdnoi. (Note that if the division of the octave
 into intervals, called the eidos, meaning 'form' or
 'species' of the octave, is known for a given tönos,
 then the so called "dynamic" mese of that tönos is
 always located between the 'higher disjunctive tone'
 and the tetrachord below it.) He claims that the (dy
 namic) mese of the Mixolydian corresponds to the
 "position" of the 'disjoined next to nete,' while that of
 the Lydian corresponds to the position of the 'disjoined
 trite,' and so on. (What this means will be explained
 below.) Only in the Dorian octave-form is the dynamic
 mese located at the position of the mese.

 In order to comprehend what is going on in Har
 monics 11,10-11, it is necessary to understand what a
 tönos is and what it means that one tönos is a fourth

 above another tönos. Essentially, a tönos is character
 ized by its "octave-form," the particular 'form' {eidos)
 in that tönos of the intervals making up an octave
 (with repetition of the same form in the second octave
 of a double octave). The double octave is assumed to
 be cyclic, in the sense that the highest and lowest notes

 of the double octave are con

 sidered to be identical.

 Although Ptolemy does not
 make this clear, apparently
 what he means by saying that
 one tönos is a fourth, a tone,
 or a semitone above another

 one is that the octave form of

 the latter tönos is the same as

 the octave-form of the former

 tönos, only rotated downwards
 by a fourth, a tone, or a semi
 tone.

 In Harmonics 11.11, Ptole
 my explains the seven octave
 forms in terms of the GPS.

 What he has in mind is prob
 ably something like the sche
 matic diagram in Fig. 12.4
 above (which is an elabora
 tion of Barker's diagram in
 GMW II, 20, but not part of
 the original manuscript). In the
 middle column of this dia

 gram, the fixed notes of the
 GPS are shown to extend

 downwards from e n = 'extra

 nete,' through d n = 'disjoined nete,' n m = 'next to
 mese,' /m = 'mese,' and m h = 'middle hypäte,' to
 u h = 'upper hypäte' (and a-o = 'added-on'). The
 central octave extends downwards from d n to m h It

 is comprised of the disjoined tetrachord between d n
 and n m, the disjunctive tone between n m and m, and
 the middle tetrachord between m and m h.

 In this middle column of the diagram, the names of
 the notes are thetic, meaning given 'according to
 positionIn the other six columns of the diagram, the
 names of the notes are dynamic, meaning given 'ac
 cording to function(In the middle column, there is
 actually no difference between thetic and dynamic.)

 The dynamic names of the notes in the first tonos
 can be thought of as being produced in the following
 way: The central interval remains unchanged (in posi
 tion), but the GPS is moved upwards as far as possi
 ble, until u h = 'upper hypäte' takes the place of the
 thetic m h = 'middle hypäte(The 'added-on' note is
 disregarded.) Since the GPS is moved as high as
 possible in the first tonos, this is also called the
 "highest" tönos. In the other six tönoi, the GPS is
 moved downwards, one step at a time, until it reaches
 its lowest possible position, with e n = 'extra nete'
 taking the place of thetic d n = 'disjoined nete.' In this
 process, as pointed out by Ptolemy, the dynamic mese
 moves from the position of the moveable note d n n
 = 'disjoined next to nete' to the position of the fixed
 note m It = 'middle hypäte
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 Note that Ptolemy's construction in Harmonics
 11.10-11 is independent of genus. What counts is only
 the positions of the fixed notes making up the bounda
 ries of the tetrachords and of the disjunctive tones.
 Thus, for instance, the octave-form of Ptolemy's
 "higher" tönos A (Mixolydian) is composed, in de
 scending order, of a tone and two tetrachords. This is
 what Ptolemy elsewhere (Harmonics II.3; Barker,
 GMW II, 322-323) calls the "first" octave-form. The
 other six octave-forms are obtained from this first one

 by rotating the first octave-form downwards, one step
 at a time.

 Ptolemy's Tables of Numbers for the Seven tönoi in
 Several Familiar Genera

 Harmonics 11.15 (Barker, GMW II, 352-355) con
 tains a series of numerical tables giving an "exposition
 of the numbers that make up the divisions of the
 familiar genera in the seven tonoi." It is not very
 difficult to see how the tables were constructed. First,
 the numbers (relative string lengths) for the boundaries
 of the fixed octave are chosen to be 60 for the 'disjoined
 nete' and 2 • 60 = 120 for the 'middle hypäte.' Then
 the corresponding number for the dynamic mese in the
 Mixolydian, a tone below the upper boundary of the
 octave, is 60 • 1 1/8 = 67 1/2. The mese in the Lydian
 is a semitone below that, etc. Thus, in Ptolemy's
 tables the numbers associated with the dynamic mese
 in each one of the seven tönoi are as follows, inde
 pendent of genus. (Note the use of sexagesimal frac
 tions, rounded to the first sixtieth in the tables.)

 60 • 11/8 = 67 1/2 = 67;30 X
 67 1/2 ■ 256/243 = 71 1/9 = (appr.) 71;07 oa' £
 71 1/9 -11/8 = 80 it'

 80 -1 1/8 = 90 tp'
 90 ■ 256/243 = 94 22/27 = (appr.) 94;49 cpö' (X0
 94 22/27' 1 1/8 = 106 2/3 = 106;40 eg' |i
 106 2/3 -1 1/8 = 120 Q'/J

 The five genera considered in Ptolemy's tables are 1)
 (a mixture of) "tense chromatic" and "tonic diatonic,"
 2) "soft diatonic" and "tonic diatonic," 3) "tonic dia
 tonic," 4) "tonic diatonic" and "ditonic diatonic," 5)
 "tonic diatonic" and "tense diatonic." In tonic dia

 tonic, for instance, the tetrachords are divided into
 intervals with the epimoric ratios 1 1/8, 1 1/7, 1 1/27.
 Here, of course, 1 1/8-1 1/7 - 1 1/27 = (9/8 • 8/7 •
 28/27 = 4/3 =) 1 1/3. Therefore, in particular, in
 Ptolemy's table 11.2 (Lydian), column 3 (tonic dia
 tonic), the numbers are constructed as follows, with
 departure from Lydian mese = 71 1/9:

 d t  121 ;54 •  1/2  = 60;57  1' <
 n m  60;57 ■ 1 1/27 = 63; 13
 m  71 1/9  = 71 ;07  oa' £'
 m /  71 1/9 ■  1 1/8  = 80  n

 m n h  80  1 1/7  = 91;26  qpa y.Q
 m h  91 ;26 •  1 1/27  = 94;49  cpö' |j,0'

 u I 94;49 -11/8 = 106;40 q;' (i'
 u n // 106;40 - 1 1/7 = 121:54 o/.a vö'.

 In the exhibited example the computed numbers are
 not, as would have been expected, strictly contained
 between 60 and 120, the chosen numbers for the
 boundaries of the fixed central octave. Actually, an
 inspection of all the seven tables in Harmonics 11.15
 reveals that the computed numbers stay between the
 expected boundaries for all considered genera only in
 the cases of Mixolydian (A), Dorian (B), and
 Hypodorian (C). These are precisely the cases when
 the boundaries of the fixed octave coincide with fixed

 notes of the tönoi.

 Hypothetical Tables of String Ratios for the Seven
 Babylonian Diatonic Modes

 Nothing corresponding to the Greek identification
 of concordant string pairs with epimoric ratios of
 string lengths is known (so far) from any cuneiform
 texts. On the other hand, this fact is quite surprising,
 in view of the enthusiastic calculations with all kinds

 of numbers and measures that are so characteristic for

 many kinds of both Sumerian and Babylonian cunei
 form texts. It is, therefore, an interesting thought
 experiment to try to figure out what Babylonian mathe
 maticians/musicians could have made of the idea of

 epimoric string ratios if they had known about it.
 In the first of the star diagrams in Fig. 10.7, the one

 for the isartu mode, the first side of the star defines a
 descending fifth from string 2 to string 6, the next side

 simply 3/2. Since string 3 is reached from string 6 by
 an ascending fourth, its relative length is (3/2)/(l 1/3)
 = 3/2 • 3/4 = 9/8, or simply, in modern notation, 32/2\
 And so on. In other words, the ratios of string lengths
 in the isartu mode can be computed as follows:

 string ratio
 2 1=1

 6 1 • 3/2 = 3/2

 3 3/2 ■ 3/4 = 32/23

 7 3V2-1 • 3/2 = 3V24
 4 3 724 • 3/4 = 34/2f'
 8 34/26 ■ 3/2 = 3 5/27
 5 35/27 • 3/4 = 3<72'J

 In the second of the star diagrams in Fig. 10.7, the
 one for the qablitu mode, the tightened string 5 T is
 reached from string 2 by a descending fourth. There
 fore the corresponding string ratio is 1 ■ 4/3 = 4/3
 = 22/3. Similarly in the third star diagram, the one for

 (Mixolydian)
 (Lydian)
 (Phrygian)
 (Dorian)
 (Hypolydian)
 (Hypophrygian)
 (Hypodorian)

 an ascending fourth from string 6 to
 string 3, the third side a descending
 fifth from string 3 to string 7, and so

 on. Suppose now that the (relative)
 length of string 2 is 1. Since string
 6 is reached from string 2 by a
 descending fifth, its relative length
 is (theoretically) 11 1/2=1 1/2, or
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 B  A#  A  G#  G  F#  F  E#  E  D#  D  C#  C  B

 2  3 T  3  4 T  4  5 T  5  6 T  6  7 T  7  8 T  8  9

 isartu  1  32/23  34/26  36/29  3/2  33/24  3S/27  2

 qablTtu  M  tt  f f  22/3  ft  «  ft  tt

 nis tuhri  ft  "  ft  11  '•  tt  24/32  ft

 md qabli  »»  tt  2S/33  tt  tt  ft  tt  tt

 pitu  ft  tt  »  tt  »  27/34  11  ft

 embubu  tt  28/35  tt  tt  tt  »  tt  ft

 kitmu  tt  tt  tt  tt  210/36  ••  ft  tt

 isartu  tt  ft  »  tt  tt  tt  tt

 Fig. 12.5. Hypothetical string ratios for the seven Babylonian (ditonic) diatonic modes.

 Ptolemy's Construction of
 the Seven tönoi in the Case

 of the Ditonic Diatonic Ge
 nus

 Ptolemy does not ex
 plain what is the origin of
 the Greater Perfect System,
 why the seven tönoi can be
 obtained by means of the
 construction in Fig. 12.3
 above, and why the num
 bers for the octave-forms

 of the mentioned "familiar

 genera" do not stay strictly
 between the expected
 boundaries 60 and 120. The

 common answer to these

 questions is that all the
 the ms tuhri mode, the tightened string 8 T is reached
 from 5 T by another descending fourth. Therefore, the
 corresponding string ratio for string 8 T is 22/3 • 4/3
 = 24/32. In the same way, the string ratio is 24/32 • 2/3
 = 25/33 for string 4 T, it is 25/33 • 4/3 = 27/34 for string
 7 T, it is 27/34 • 2/3 = 28/35 for string 3 T, and it is 28/34

 ■ 4/3 = 2'°/36 for string 6 T.
 The result of this series of computations is dis

 played in tabular form below.
 There is no doubt that Ptolemy must have been

 familiar with the numbers in this table, which is like
 the tables in Harmonics 11.15, but in the case of the
 ditonic diatonic genus. Incidentally, the numbers which
 Ptolemy associated in his tables with the dynamic
 mese in each one of the seven octave-forms are the

 numbers associated above with strings 3, 4 T, 5 T, 6,
 7 T, 8 T, and 9. Cf. Fig. 12.8 below.

 As is well known, an important role was played in
 Babylonian mathematics by so called "regular sexa
 gesimal numbers" defined as numbers con
 taining no other factors than positive or
 negative powers of 2, 3, or 5. Regular
 sexagesimal numbers have the important
 property that both they and their recipro
 cal numbers can be expressed as integers
 divided by suitable powers of the base 60.
 Interestingly, but purely by coincidence,
 all the hypothetical string ratios for the
 seven Babylonian diatonic heptatonic
 modes displayed above in Fig. 12.5 are
 regular sexagesimal numbers. In Fig. 12.6,
 all those string ratios are written first as
 ratios of powers of 2 and 3, then as
 common fractions, and finally as sexages
 imal numbers, both in the Babylonian
 form and in the form used by Ptolemy in
 his tables.

 various genera appearing in ancient Greek music theory
 are simply modifications of one basic genus, the so
 called "ditonic" diatonic, in which all intervals are
 made up of tones and semitones, in particular the
 tetrachords of two tones (a ditone) and a semitone.
 This is the genus of the scale constructed in Sectio
 Canonis, Prop. 20 (Fig. 12.2 above), which in its turn
 is closely related to the seven Old Babylonian diatonic
 modes.

 In the case of the ditonic diatonic genus, an octave
 form is a particular distribution of tones and semitones
 within an octave or double octave. It is instructive to

 see how the seven octave-forms can be generated in a
 surprisingly simple way in this special case.

 Now, return to Ptolemy's result in Harmonics 11.10
 that the seven tönoi he had constructed (and their
 corresponding octave-forms), namely A, F, D, B, G,
 E, C, in this order, exceed each other by a semitone,
 two tones, a semitone, and two tones. Take it for

 (ditonic) diatonic string ratios

 common fractions sexagesimal fractions as in Harmonics 11.15

 2  (B)  1  1 1  60

 3 T  (A#)  28/35  256/243 1  03 12 35 33 20  63; 13
 3  (A)  32/23  9/8 1  07 30  67;30
 4 T  (G#)  25/33  32/27 1  11 06 40  71;07
 4  (G)  34/26  81/64 1  15 56 15  75;56
 5 T  (F#)  22/3  4/3 1  20  80

 5  (F)  36/29  729/512 1  25 25 46 52 30  85;26
 6 T  (E#)  210/36  1024/729 1  24 16 47 24 26 40  84; 17
 6  (E)  3/2  3/2 1  30  90

 7 T  (D#)  27/34  128/81 1  34 48 53 20  94;49
 7  (D)  33/24  27/16 1  41 1 5  101 ;15
 8 T  (C#)  24/32  16/9 1  46 40  106;40
 8  (C)  35/27  243/128 1  53 54 22 30  113;54
 9  (B)  2  2 2  120

 Fig. 12.6. (Ditonic) diatonic string ratios ordered by size.
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 A (s) (t) (t) (s) (t) (t) (t)  F (t) (t) (s) (t) (t) (t) s S  D (t) (s) (t) (t) (t) s t 1  B (s) (t) (t) (t) s t t  G (t) (t) (t) s , t t s

 t

 E (0 (t) s t | t s t

 t

 C (t) s t t s t t

 Fig. 12.7. Generation of the seven octave-forms in the
 ditonic diatonic genus. (Not in Harmonics 11.10.)

 A: the "higher" tdnos

 F: a limma (semitone) below A

 D: a tone and a semitone below A

 B: two tones and a semitone below A

 G: a semitone two tones and a semitone below A

 E: a tone, a semitone two tones and a semitone below A

 C: two tones, a semitone, two tones and a semitone below A

 then string 3, a fifth above

 string 7, and finally string
 6, a fourth below string
 3. In this whole retuning
 algorithm, strings 2 and
 9 are not changed.

 In Ptolemy's proce
 dure in Harmonics 11.10,
 on the other hand, lim
 ited to the case of the

 ditonic diatonic genus,
 the seven Greek octave

 forms are constructed by
 starting with the Mixo
 lydian octave-form and
 then rotating that octave

 granted that the octave-forms stay strictly within the
 boundaries of the prescribed interval. Then the oc
 tave-form F, being a semitone below A, must begin
 with a semitone. See Fig. 12.7 above. Similarly, the
 octave-form D, being a tone below F, hence a semi
 tone and a tone below A, must begin with a tone and
 a semitone. And so on. The final octave-form, C, must
 begin with two tones, a semitone, two tones, and a
 semitone, together four tones and two semitones.
 Clearly, to complete the octave, the last interval of the
 octave-form C must then be a tone. Now, when the
 whole octave-form C is known, the whole octave-form
 E, being a tone above C will also be known. And so
 on. See again Fig. 12.7. Thus, the layout of the seven
 octave-forms in the ditonic diatonic genus is com
 pletely determined by the restriction to a fixed octave,
 together with Ptolemy's assumption in Harmonics 11.10
 that they are dependent on each other as in Fig. 12.3.

 The distribution of tones and semitones (in de
 scending order) in the seven Greek ditonic diatonic
 octave-forms (as in Fig. 12.7 above) can be compared
 with the corresponding distribution of tones and semi
 tones (from string 2 to string 9) in the seven Old
 Babylonian diatonic modes (as in Fig. 10.7 above).
 The proposed identifications are as follows:
 Mixolydian t t t s t t s isartu ('normal')
 Lydian s t t t s t t embübu
 Phrygian t s t t t s t nid qabli
 Dorian t t s t t t s qablitu ('middle')
 Hypolydian s t t s t t t kitmu
 Hypophrygian t s t t s t t pitu
 Hypodorian t t s t t s t nis tuhri

 According to the retuning algorithm in UET VII
 74+, § 2, the seven Old Babylonian diatonic modes
 can be constructed by starting with a sammü instru
 ment tuned to the isartu mode, then successively
 tightening first string 5, a fourth below string 2, then
 strings 8, a fourth below string 5 (and the equivalent
 string 1, a fifth above string 5), then string 4, a fifth
 above string 8, then string 7, a fourth below string 4,

 form twice by a fourth downwards, then by a fifth
 upwards, by a fourth downwards, by a fifth upwards,
 and by a fourth downwards. In this whole generating
 algorithm, the boundaries of the octave are not
 changed.

 The obvious similarity between the two algorith
 mic procedures immediately suggests that the Old
 Babylonian retuning algorithm and Ptolemy's generat
 ing algorithm must be mathematically equivalent in
 some sense. A simple way of demonstrating this equiva
 lence is by use of 7/3 star diagrams as in Fig. 12.8
 below. Indeed, start with the first 7/3 star diagram,
 which is in the configuration of the isartu mode,
 corresponding to A Mixolydian. In this configuration,
 the octave extending from string 2, corresponding to
 thetic n m = disjoined nete, to string 9, corresponding
 to thetic u h = middle hypäte, is divided, in descend
 ing order, into a tone and two tetrachords. In particu
 lar, there is a tritone between strings 2 and 5. The
 second star diagram in Fig. 12.8 is in the configuration
 of the qablitu mode, corresponding to B Dorian. It is
 the result of a rotation by a fourth downwards of the
 configuration in the first start diagram. That rotation
 moves, in particular, the semitone between strings 1
 (8) and 2 (9) to a semitone between strings 4 and 5,
 and the semitone between strings 5 and 6 to a semi
 tone between 1 (8) and 2 (9). In other words, the
 combined effect of the rotation is that it changes the
 semitone between strings 5 and 6 to a semitone be
 tween strings 4 and 5. Therefore, the only observable
 result of the rotation is that it tightens string 5, which
 is the same as moving n m = next to mese a semitone
 upwards. In the same way, the only observable result
 of moving the configuration in the second star diagram
 by a fourth downwards is that string 1 (8) is tightened.
 Another rotation four steps downwards leads to the
 configuration of the nis tuhri mode (C = Hypodorian).
 Next, a rotation five steps upwards (to the left) leads
 to the configuration of the nid qabli mode (D Phrygian),
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 A Mixolydian
 isartu

 1(8)

 B Dorian

 qablitu

 1(8)

 E Hypophrygian
 pltu

 F Lydian
 embiibu

 1 (8) T

 D Phrygian
 lild qabli

 1 (8) T

 C Hypodorian
 nis tuhri

 1 (8) T

 G Hypolydian
 kitmu

 1 (8) T

 O = mese

 Fig. 12.8. Ptolemy's construction of the seven Greek octave
 forms, explained in terms of 7/3 star diagrams.

 a rotation four steps downwards leads to the pitu mode
 (E Hypophrygian), a new rotation five steps upwards
 leads to the embübu mode (F Lydian). After the sixth
 rotation, the final configuration is in the kitmu mode,
 corresponding to G Hypolydian, with all strings ex
 cept string 2 (9) tightened. This
 means that in this whole retim

 ing algorithm, interpreted as
 successive tightenings of strings,
 strings 2 (thetic disjoined nete)
 and 9 (thetic middle hypäte)
 are never affected. That is as it
 should be, because all the seven
 octave-forms are supposed to
 stay strictly within the fixed cen
 tral octave of the GPS.

 (Alternatively, following
 UET VII 74+, §3, the seven
 Old Babylonian diatonic modes
 can be constructed as in Fig.
 10.5 by starting again with the
 sammü instrument tuned to the

 isartu mode, then successively
 loosening strings 2, 6, 3, 7, 4,
 1, and 8. In this alternative
 retuning algorithm, only string
 5, halfway between strings 1
 and 9, is never affected.)

 13. Cyclic Representations
 of Modes in a Medie
 val Islamic Manu

 script0

 Perhaps the most influen
 tial of all medieval Islamic

 treatises on music was Kitäb

 al-Adwär (The Book of Cy
 cles) by Safi ad-Din al-Ur
 mawi (f 1294). A study of a
 preliminary version of that
 work was published by Wright
 in BSOAS 58. (See also Ma
 nik, ATM and Wright, Modal
 Systems.) A partial French
 translation of the work is con

 tained within the translation

 of a commentary on it in
 D'Erlanger, MA 3. A beauti
 fully written copy of Kitäb al
 Adwär, manuscript ljs235 in

 the L. J. Schoenberg Collection, is available online at
 http://dewey.library.upenn.edu/sceti/ljs. This copy of
 the work contains diagrams presented with an excep
 tionally high degree of care, precision and visual
 clarity.

 . duple ratio _s. duple ratio
 /y!8 1

 #15

 .5, duple ratio

 f 18 '

 third cycle
 (nis tuhri Hypodorian)

 second cycle
 (pitu Hypophrygian)

 first cycle
 (kitwu Hypolydiaii)

 Fig. 13.1. Kitäb al-Adwär, Ch. 6. Cyclic representations of three
 diatonic modes. The detail from the manuscript is published

 here with the kind permission of L. J. Schoenberg.

 '") I want to thank Anne Kilmer
 and Janet Smith, who told me about
 the existence of star-figures illus
 trating a 16th century Arabic musi
 cal tuning system.
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 Of particular interest in connection with the discus
 sion above of the 7/3 star diagram on CBS 1766 and
 its conjectured use in Babylonian music theory are six
 circular diagrams on p. 8 of the manuscript ljs235.
 Three of those diagrams are reproduced in Fig. 13.1
 above, together with line drawings showing the same
 three circles but with English translations of the Ara
 bic text in and around the original diagrams.

 Along the outside of the periphery of each one of
 the three circles eight numbers in alphabetic abjad
 numerals denote eight notes within an octave. Along

 1 2 (3) 4 5 (6) 7 8 9 (10)
 C Db (Ebb) D Eb (Fb) E F Gb (Abb)

 the insides of the peripheries, the Arabic letters t and
 b denote tones and semitones, respectively.

 The so called abjad numerals are based on an older
 form of the Arabic alphabet, which begins with the
 letters a, b, j, d. The first 9 letters stand for the ones,
 from 1 to 9, the next 9 letters stand for the tens, from
 10 to 90, and so on. In Kitäb al-Adwär, 17 fixed
 "Pythagorean" notes within an octave are denoted by
 the numbers from 1 to 17 in abjad notation. The
 positions of the notes within the octave are as shown
 below. (Cf. Manik, ATM, 54-56).
 11 12 (13) 14 15 16 (17) 18
 G Ab (Bbb) A Bb B (Dbb) C'

 Here s stands for a limma or semitone (string ratio
 256/243), while c stands for a "Pythagorean comma"
 (string ratio 531441/524288). Note that a whole tone
 can be divided into two semitones and a comma. It is

 easy to check that the notes and numbers within
 brackets above do not appear in the cyclic representa
 tions of the three diatonic modes in Fig. 13.1.

 Safi ad-Din's 17 notes were constructed by use of
 an algorithm resembling the algorithm used in the
 Sectio Canonis, Props. 19-20 (Figs. 12.1-2 above), in
 terms of only octaves, fifths, fourths, and whole tones.
 See Manik, ATM, Ch. 3, and Fig. 13.2 below.

 With Safi ad-DIn's notations, the eight notes and
 seven intervals of the cyclic diagrams in Fig. 13.1 are
 from left to right along the peripheries of the circles,
 in descending order:
 first circle: 18 (t) 15 (s) 14 (t) 11 (t)

 C Bb A G

 second circle: 18 (t) 15 (t) 12 (s) 11 (t)
 C' IBb Ab G

 third circle: 18 (t) 15 (t) 12 (t) 9 (s)
 C' Bb Ab Gb

 This means that in each one of the three cases the

 octave is divided, in descending direction, into a whole
 tone, the "upper disjunction," followed by two con
 secutive identical ditonic diatonic tetrachords. Note

 that in contrast to the diagrams in Fig. 10.7, where all
 the sections of the peripheries of the circles are of
 equal length, the sections of the peripheries of the
 circles in Fig. 13.1 corresponding to the tones are
 larger than the sections corresponding to the semi
 tones. Moreover, the first and last of the notes indi

 fourth circle: 18 (t) 15 (c, s) 13
 C Bb Bbb

 fifth circle: 18 (t) 15 (t) 12
 C Bb Ab

 sixth circle: 18 (t) 15 (c, s) 13
 C Bb Bbb

 cated in the cyclic diagrams in Fig. 13.1 are an octave
 apart, but in contrast to the identical representations of
 strings 1 and 8 in the 7/3 star figure on CBS 1766, in
 the diagrams in Fig. 13.1 the first and eighth notes are
 separated by a gap called 'relationship of the double,'
 meaning "duple ratio" (ratio of the octave).
 Another difference between the diagrams in Fig.

 10.7 and those in Fig. 13.1 is that in the latter ones the
 unclear dichords are not represented by sides of the
 star diagrams. Thus, in the first diagram in Fig. 13.1,
 the unclear dichord could have been indicated by a
 dashed straight line connecting the third note to the
 seventh note, and so on."
 In spite of the mentioned differences between the

 diagrams in Fig. 13.1 and those in Fig. 10.7, it is clear
 that they are basically

 8 (s) 7 (t) 4 (t) 1 of the same type. How
 F E C C ever, it would be diffi
 8 (t) 5 (s) 4 (t) 1 cult to believe that there

 is any historical connec
 tion between the Old

 Babylonian star diagram
 in CBS 1766 and the more elaborate cyclic diagrams
 in Kitäb al-Adwär.

 The three remaining cyclic diagrams on p. 8 of the
 Schoenberg copy of Kitäb al-Adwär, called 'fourth
 cycle,' 'fifth cycle,' and 'sixth cycle' are of the same
 general type, but represent three modes of a different
 genus.

 For comparison, here are the eight notes and seven
 intervals along the peripheries of each one of these
 three additional cyclic diagrams:

 (s, s) 11 (t) 8 (c, s) 6 (s, s) 4 (t) 1
 G F Fb DC

 (c, s) 10 (s, s) 8 (t) 5 (c, s) 3 (s, s) 1
 Abb F Eb Ebb C

 (t) 10 (s, s) 8 (c, s) 6 (t) 3 (s, s) 1
 Abb F Fb Ebb C

 5

 F Eb

 8 (t) 5
 F Eb

 (t)

 4

 D

 2 (s)
 Db

 1

 C

 ") Tn BSOAS 58, 467, Wright explains the situation by
 writing that "the notes of the scale are marked around the
 circumference and lines are drawn across to link those which

 are a fourth or fifth apart in order to show the number of
 consonant intervals each scale contains." This is also the

 interpretation given in a medieval Arabic commentary to
 Kitäb al-Adwär written by Mubarak Sah. (See D'Erlanger,
 MA III, 324-333.) My sincere thanks are due to O. Wright
 for helping me to understand some difficulties in this text.
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 1 c
 1 23456789 10 11 (12) (13) (14) (15) (16) 17

 Db

 Ebb
 D

 5 Eb
 6 Fb
 7 E

 8 F

 9 Gb
 10 Abb
 11 G
 12 Ab
 13 Bbb
 14 A
 15 Bb
 16 B
 17 Dbb

 c 18

 u

 V >
 00

 o

 S n

 A ^ o
 §

 A o

 ^ in

 ■■3 J
 ■3

 1 .Divide 1 -m in 2 equal parts, and set 18 at the midpoint.
 2. Divide 1 -m in 3 equal parts, and set 11 at the end of the first 3rd.
 3. Divide 1 -m in 4 equal parts, and set 8 at the end of the first 4th.
 4. Divide 8-m in 4 equal parts, and set 15 at the end of the first 4th.
 5. Divide 1 -m in 9 equal parts, and set 4 at the end of the first 9th
 6. Divide 4-m in 9 equal parts and set 7 at the end of the first 9th.
 7. Set 5 at the point where 8-m is prolonged by an 8th of itself in the direction of 1.
 8. Set 2 at the point where 5-m is prolonged by an 8th of itself in the direction of 1.

 9. Divide 2-m in three equal parts, and set 12 at the end of the first 3rd.
 10. Divide 2-m in 4 equal parts, and set 9 at the end of the first 4th.
 11. Divide 9-m in 4 equal parts, and set 16 at the end of the first 4th.
 12. Set 6 at the point where 16-m is prolonged by one half of itself in the direction of 1.
 And so on

 m

 Fig. 13.2. The algorithm for Saf! ad-Din's division of the octave into 17 intervals.

 Here c, s stands for an "apotome," a comma followed
 by a limma, with the string ratio 256/243 • 65536/59049
 = 2187/2048, while s, s stands for a "double limma,"
 with the string ratio 256/243 • 256/243 = 65536/59049.
 Both kinds of intervals are indifferently written as j in
 the diagrams, while the limma and the comma both are
 written as b.
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